Omni-range spatial contexts for visual classification

Bingbing Ni, Mengdi Xu, Jinhui Tang, Shuicheng Yan, Pierre Moulin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Spatial contexts encode rich discriminative information for visual classification. However, as object shapes and scales vary significantly among images, spatial contexts with manually specified distance ranges are not guaranteed with optimality. In this work, we investigate how to automatically select discriminative and stable distance bin groups for modeling image spatial contexts to improve classification performance. We make two observations. First, the number of distance bins for context modeling can be arbitrarily large, and discriminative contexts are only from a small subset of distance bins. Second, adjacent distance bins for contexts modeling often show similar characteristics, thus encouraging grouping them together can result in more stable representation. Utilizing these two observations, we propose an omni-range spatial context mining framework for image classification. A sparse selection and grouping regularizer is employed along with an empirical risk, to discover discriminative and stable distance bin groups for context modeling. To facilitate efficient optimization, the objective function is approximated by a smooth convex function with theoretically guaranteed error bounds. The selected and grouped image spatial contexts, which are applied in food and national flag recognition, are demonstrated to be discriminative, compact and robust.

Original languageEnglish (US)
Title of host publication2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
Pages3514-3521
Number of pages8
DOIs
StatePublished - 2012
Event2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012 - Providence, RI, United States
Duration: Jun 16 2012Jun 21 2012

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
Country/TerritoryUnited States
CityProvidence, RI
Period6/16/126/21/12

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Omni-range spatial contexts for visual classification'. Together they form a unique fingerprint.

Cite this