TY - GEN
T1 - Oil effects on in-tube evaporation of CO2 by altering flow regime and properties
AU - Hrnjak, Pega
AU - Kim, Seongho
PY - 2013
Y1 - 2013
N2 - Flow boiling heat transfer characteristics of CO2 with and without oil were investigated experimentally in horizontal smooth and enhanced tubes with an inner diameter of 11.2 mm. The visualization of flow pattern provides a detailed attributes of the nucleate and the convective boiling heat transfer. In order to investigate the effect of the miscible oil on the heat transfer of CO2, POE (polyolester) RENSIO C85E oil is added to give an oil circulation rate (OCR) between 0.5% and 2%. Results are compared with those of pure CO2. The experimental conditions include evaporation temperatures of -15 °C, mass fluxes from 40 to 200 kg/m2 s, heat fluxes from 0.5 to 10 kW/m2, and vapor qualities from 0.1 to 0.8. Oil generally deteriorates the heat transfer coefficient of pure CO2. The reduction in heat transfer coefficient is most apparent at low vapor qualities, 0.1 to 0.4, and at low mass fluxes, 100 and 200 kg/m2. It is caused by the suppression of nucleate boiling due to increased surface tension. At conditions where the convective boiling contribution is dominant, vapor qualities above 0.5, oil increases heat transfer coefficients. Through visualization, it is shown that the wetted area on the perimeter of inner tube is enhanced due to formation of foaming in the smooth tube. However, such enhancement of heat transfer due to forming is negligible in the enhanced tube, because the enhanced factor due to micro-finned structures is dominant.
AB - Flow boiling heat transfer characteristics of CO2 with and without oil were investigated experimentally in horizontal smooth and enhanced tubes with an inner diameter of 11.2 mm. The visualization of flow pattern provides a detailed attributes of the nucleate and the convective boiling heat transfer. In order to investigate the effect of the miscible oil on the heat transfer of CO2, POE (polyolester) RENSIO C85E oil is added to give an oil circulation rate (OCR) between 0.5% and 2%. Results are compared with those of pure CO2. The experimental conditions include evaporation temperatures of -15 °C, mass fluxes from 40 to 200 kg/m2 s, heat fluxes from 0.5 to 10 kW/m2, and vapor qualities from 0.1 to 0.8. Oil generally deteriorates the heat transfer coefficient of pure CO2. The reduction in heat transfer coefficient is most apparent at low vapor qualities, 0.1 to 0.4, and at low mass fluxes, 100 and 200 kg/m2. It is caused by the suppression of nucleate boiling due to increased surface tension. At conditions where the convective boiling contribution is dominant, vapor qualities above 0.5, oil increases heat transfer coefficients. Through visualization, it is shown that the wetted area on the perimeter of inner tube is enhanced due to formation of foaming in the smooth tube. However, such enhancement of heat transfer due to forming is negligible in the enhanced tube, because the enhanced factor due to micro-finned structures is dominant.
UR - http://www.scopus.com/inward/record.url?scp=84893008999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893008999&partnerID=8YFLogxK
U2 - 10.1115/HT2013-17838
DO - 10.1115/HT2013-17838
M3 - Conference contribution
AN - SCOPUS:84893008999
SN - 9780791855485
T3 - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
BT - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
T2 - ASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 14 July 2013 through 19 July 2013
ER -