Observations and scaling of tidal mass transport across the lower Ganges-Brahmaputra delta plain

Implications for delta management and sustainability

Richard Hale, Rachel Bain, Steven Goodbred, James Leonard Best

Research output: Contribution to journalArticle

Abstract

The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting >1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges-Brahmaputra-Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.

Original languageEnglish (US)
Pages (from-to)231-245
Number of pages15
JournalEarth Surface Dynamics
Volume7
Issue number1
DOIs
StatePublished - Mar 12 2019

Fingerprint

mass transport
plains
sediments
sustainability
scaling
rivers
tide
sediment
tides
sediment transport
river
tidal channel
wet season
suspended sediment
delivery
dry season
water
salinity
timescale
freshwater sediment

ASJC Scopus subject areas

  • Geophysics
  • Earth-Surface Processes

Cite this

Observations and scaling of tidal mass transport across the lower Ganges-Brahmaputra delta plain : Implications for delta management and sustainability. / Hale, Richard; Bain, Rachel; Goodbred, Steven; Best, James Leonard.

In: Earth Surface Dynamics, Vol. 7, No. 1, 12.03.2019, p. 231-245.

Research output: Contribution to journalArticle

@article{e3da781d74704082ac85ed42ebd943fa,
title = "Observations and scaling of tidal mass transport across the lower Ganges-Brahmaputra delta plain: Implications for delta management and sustainability",
abstract = "The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting >1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges-Brahmaputra-Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.",
author = "Richard Hale and Rachel Bain and Steven Goodbred and Best, {James Leonard}",
year = "2019",
month = "3",
day = "12",
doi = "10.5194/esurf-7-231-2019",
language = "English (US)",
volume = "7",
pages = "231--245",
journal = "Earth Surface Dynamics",
issn = "2196-6311",
publisher = "Copernicus Publications",
number = "1",

}

TY - JOUR

T1 - Observations and scaling of tidal mass transport across the lower Ganges-Brahmaputra delta plain

T2 - Implications for delta management and sustainability

AU - Hale, Richard

AU - Bain, Rachel

AU - Goodbred, Steven

AU - Best, James Leonard

PY - 2019/3/12

Y1 - 2019/3/12

N2 - The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting >1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges-Brahmaputra-Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.

AB - The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting >1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges-Brahmaputra-Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.

UR - http://www.scopus.com/inward/record.url?scp=85062882712&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062882712&partnerID=8YFLogxK

U2 - 10.5194/esurf-7-231-2019

DO - 10.5194/esurf-7-231-2019

M3 - Article

VL - 7

SP - 231

EP - 245

JO - Earth Surface Dynamics

JF - Earth Surface Dynamics

SN - 2196-6311

IS - 1

ER -