Observational and modeling constraints on global anthropogenic enrichment of mercury

Helen M. Amos, Jeroen E. Sonke, Daniel Obrist, Nicholas Robins, Nicole Hagan, Hannah M. Horowitz, Robert P. Mason, Melanie Witt, Ian M. Hedgecock, Elizabeth S. Corbitt, Elsie M. Sunderland

Research output: Contribution to journalReview articlepeer-review


Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling.

Original languageEnglish (US)
Pages (from-to)4036-4047
Number of pages12
JournalEnvironmental Science and Technology
Issue number7
StatePublished - Apr 7 2015
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry


Dive into the research topics of 'Observational and modeling constraints on global anthropogenic enrichment of mercury'. Together they form a unique fingerprint.

Cite this