Observation of ultracold atomic bubbles in orbital microgravity

R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C. Lannert, J. D. Murphree, E. R. Elliott, J. R. Williams, R. J. Thompson, N. Lundblad

Research output: Contribution to journalArticlepeer-review

Abstract

Substantial leaps in the understanding of quantum systems have been driven by exploring geometry, topology, dimensionality and interactions in ultracold atomic ensembles1–6. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing an ultracold bubble—potentially Bose–Einstein condensed—relates to areas of interest including quantized-vortex flow constrained to a closed surface topology, collective modes and self-interference via bubble expansion7–17. Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analogue expansion physics18–20. Here we report observations from the NASA Cold Atom Lab21 facility onboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe bubble configurations of varying size and initial temperature, and explore bubble thermodynamics, demonstrating substantial cooling associated with inflation. We achieve partial coverings of bubble traps greater than one millimetre in size with ultracold films of inferred few-micrometre thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are among the first measurements made with ultracold atoms in space, using perpetual freefall to explore quantum systems that are prohibitively difficult to create on Earth. This work heralds future studies (in orbital microgravity) of the Bose–Einstein condensed bubble, the character of its excitations and the role of topology in its evolution.

Original languageEnglish (US)
Pages (from-to)281-286
Number of pages6
JournalNature
Volume606
Issue number7913
DOIs
StatePublished - Jun 9 2022
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Observation of ultracold atomic bubbles in orbital microgravity'. Together they form a unique fingerprint.

Cite this