TY - JOUR
T1 - Observation of a quantum eraser
T2 - A revival of coherence in a two-photon interference experiment
AU - Kwiat, Paul G.
AU - Steinberg, Aephraim M.
AU - Chiao, Raymond Y.
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 1992
Y1 - 1992
N2 - We have observed an effect known as a quantum eraser, using a setup similar to one previously employed to demonstrate a violation of Bells inequalities. In this effect, an interfering system is first rendered incoherent by making the alternate Feynman paths which contribute to the overall process distinguishable; with our apparatus this is achieved by placing a half wave plate in one arm of a Hong-Ou-Mandel interferometer so as to rotate the polarization of the light in that arm by 90°. This adds information to the system, in that polarization is a new parameter which serves to label the path of a given photon, even after a recombining beam splitter. The quantum eraser removes this information from the state vector, after the output port of the interferometer, but in time to cause interference effects to reappear upon coincidence detection. For this purpose, we use two polarizers in front of our detectors. We present experimental results showing how the degree of erasure (which determines the visibility of the interference) depends on the relative orientation of the polarizers, along with theoretical curves. In addition, we show how this procedure may do more than merely erase, in that the act of pasting together two previously distinguishable paths can introduce a new relative phase between them.
AB - We have observed an effect known as a quantum eraser, using a setup similar to one previously employed to demonstrate a violation of Bells inequalities. In this effect, an interfering system is first rendered incoherent by making the alternate Feynman paths which contribute to the overall process distinguishable; with our apparatus this is achieved by placing a half wave plate in one arm of a Hong-Ou-Mandel interferometer so as to rotate the polarization of the light in that arm by 90°. This adds information to the system, in that polarization is a new parameter which serves to label the path of a given photon, even after a recombining beam splitter. The quantum eraser removes this information from the state vector, after the output port of the interferometer, but in time to cause interference effects to reappear upon coincidence detection. For this purpose, we use two polarizers in front of our detectors. We present experimental results showing how the degree of erasure (which determines the visibility of the interference) depends on the relative orientation of the polarizers, along with theoretical curves. In addition, we show how this procedure may do more than merely erase, in that the act of pasting together two previously distinguishable paths can introduce a new relative phase between them.
UR - http://www.scopus.com/inward/record.url?scp=0001681807&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001681807&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.45.7729
DO - 10.1103/PhysRevA.45.7729
M3 - Article
AN - SCOPUS:0001681807
SN - 1050-2947
VL - 45
SP - 7729
EP - 7739
JO - Physical Review A
JF - Physical Review A
IS - 11
ER -