TY - JOUR
T1 - Objective classification system for sagittal craniosynostosis based on suture segmentation
AU - Qian, Xiaohua
AU - Tan, Hua
AU - Zhang, Jian
AU - Zhuang, Xiahai
AU - Branch, Leslie
AU - Sanger, Chaire
AU - Thompson, Allison
AU - Zhao, Weiling
AU - Li, King Chuen
AU - David, Lisa
AU - Zhou, Xiaobo
N1 - Publisher Copyright:
© 2015 American Association of Physicists in Medicine.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Purpose: Spring-assisted surgery is an effective and minimally invasive treatment for sagittal craniosynostosis (CSO). The principal barrier to the advancement of spring-assisted surgery is the patient-specific spring selection. The selection of spring force depends on the suture involved, subtypes of sagittal CSO, and age of the infant, among other factors. Clinically, physicians manually judge the subtype of sagittal CSO patients based on their CT image data, which may cause bias from different clinicians. An objective system would be helpful to stratify the sagittal CSO patients and make spring choice less subjective. Methods: The authors developed a novel informatics system to automatically segment and characterize sutures and classify sagittal CSO. The proposed system is composed of three phases: preprocessing, sutures segmentation, and classification. First, the three-dimensional (3D) skull was extracted from the CT images and aligned with the symmetry of the cranial vault. Second, a "hemispherical projection" algorithm was developed to transform 3D surface of the skull to a polar two-dimensional plane. Through the transformation, an "effective" projected region can be obtained to enable easy segmentation of sutures. Then, the different types of sutures, such as coronal sutures, lambdoid sutures, sagittal suture, and metopic suture, obtained from the segmented sutures were further identified by a dual-projection technique of the midline of the sutures. Finally, 108 quantified features of sutures were extracted and selected by a proposed multiclass feature scoring system. The sagittal CSO patients were classified into four subtypes: anterior, central, posterior, and complex with the support vector machine approach. Fivefold cross validation (CV) was employed to evaluate the capability of selected features in discriminating the four subtypes in 33 sagittal CSO patients. Receiver operating characteristics (ROC) curves were used to assess the robustness of the developed system. Results: The segmentation results of the proposed method were clinically acceptable for the qualitative evaluation. For the quantitative evaluation, the fivefold CV accuracy of the classification for the four subtypes was 72.7%. This classification system was reliable with the area under curve (in ROC analysis) being greater than 0.8 for four two-class problems. Conclusions: The proposed hemispherical projection algorithm based on backtracking search can successfully segment sutures of the cranial vault. The classification system can also offer a desirable performance. As a result, the proposed segmentation and classification system is expected to bring insights into clinic research and the selection of the spring force to facilitate widespread application of this minimally invasive treatment.
AB - Purpose: Spring-assisted surgery is an effective and minimally invasive treatment for sagittal craniosynostosis (CSO). The principal barrier to the advancement of spring-assisted surgery is the patient-specific spring selection. The selection of spring force depends on the suture involved, subtypes of sagittal CSO, and age of the infant, among other factors. Clinically, physicians manually judge the subtype of sagittal CSO patients based on their CT image data, which may cause bias from different clinicians. An objective system would be helpful to stratify the sagittal CSO patients and make spring choice less subjective. Methods: The authors developed a novel informatics system to automatically segment and characterize sutures and classify sagittal CSO. The proposed system is composed of three phases: preprocessing, sutures segmentation, and classification. First, the three-dimensional (3D) skull was extracted from the CT images and aligned with the symmetry of the cranial vault. Second, a "hemispherical projection" algorithm was developed to transform 3D surface of the skull to a polar two-dimensional plane. Through the transformation, an "effective" projected region can be obtained to enable easy segmentation of sutures. Then, the different types of sutures, such as coronal sutures, lambdoid sutures, sagittal suture, and metopic suture, obtained from the segmented sutures were further identified by a dual-projection technique of the midline of the sutures. Finally, 108 quantified features of sutures were extracted and selected by a proposed multiclass feature scoring system. The sagittal CSO patients were classified into four subtypes: anterior, central, posterior, and complex with the support vector machine approach. Fivefold cross validation (CV) was employed to evaluate the capability of selected features in discriminating the four subtypes in 33 sagittal CSO patients. Receiver operating characteristics (ROC) curves were used to assess the robustness of the developed system. Results: The segmentation results of the proposed method were clinically acceptable for the qualitative evaluation. For the quantitative evaluation, the fivefold CV accuracy of the classification for the four subtypes was 72.7%. This classification system was reliable with the area under curve (in ROC analysis) being greater than 0.8 for four two-class problems. Conclusions: The proposed hemispherical projection algorithm based on backtracking search can successfully segment sutures of the cranial vault. The classification system can also offer a desirable performance. As a result, the proposed segmentation and classification system is expected to bring insights into clinic research and the selection of the spring force to facilitate widespread application of this minimally invasive treatment.
KW - classification of sagittal craniosynostosis
KW - hemispherical projection
KW - multiclass feature scoring
KW - sagittal craniosynostosis
KW - spring-assisted surgery
KW - suture identification
KW - suture segmentation
UR - http://www.scopus.com/inward/record.url?scp=84940497981&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940497981&partnerID=8YFLogxK
U2 - 10.1118/1.4928708
DO - 10.1118/1.4928708
M3 - Article
C2 - 26329001
AN - SCOPUS:84940497981
SN - 0094-2405
VL - 42
SP - 5545
EP - 5558
JO - Medical Physics
JF - Medical Physics
IS - 9
ER -