Nutrigenomic effect of saturated and unsaturated long chain fatty acids on lipid-related genes in goat mammary epithelial cells: What is the role of PPARγ?

Einar Vargas-Bello-Pérez, Wangsheng Zhao, Massimo Bionaz, Jun Luo, Juan J. Loor

Research output: Contribution to journalArticlepeer-review

Abstract

A prior study in bovine mammary (MACT) cells indicated that long-chain fatty acids (LCFA) C16:0 and C18:0, but not unsaturated LCFA, control transcription of milk fat-related genes partly via the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, in that study, the activation of PPAR by LCFA was not demonstrated but only inferred. Prior data support a lower response of PPAR to agonists in goat mammary cells compared to bovine mammary cells. The present study aimed to examine the hypothesis that LCFA alter the mRNA abundance of lipogenic genes in goat mammary epithelial cells (GMEC) at least in part via PPARγ. Triplicate cultures of GMEC were treated with a PPARγ agonist (rosiglitazone), a PPARγ inhibitor (GW9662), several LCFA (C16:0, C18:0, t10,c12-CLA, DHA, and EPA), or a combination of GW9662 with each LCFA. Transcription of 28 genes involved in milk fat synthesis was measured using RT-qPCR. The data indicated that a few measured genes were targets of PPAR in GMEC (SCD1, FASN, and NR1H3) while more genes required a basal activation of PPARγ to be transcribed (e.g., LPIN1, FABP3, LPL, and PPARG). Among the tested LCFA, C16:0 had the strongest effect on upregulating transcription of measured genes followed by C18:0; however, for the latter most of the effect was via the activation of PPARγ. Unsaturated LCFA downregulated transcription of measured genes, with a lesser effect by t10,c12-CLA and a stronger effect by DHA and EPA; however, a basal activation of PPAR was essential for the effect of t10,c12-CLA while the activation of PPARγ blocked the effect of DHA. The transcriptomic effect of EPAwas independent from the activation of PPARγ. Data from the present study suggest that saturated LCFA, especially C18:0, can modulate milk fat synthesis partly via PPARγ in goats. The nutrigenomic effect of C16:0 is not via PPARγ but likely via unknown transcription factor(s) while PPARγ plays an indirect role on the nutrigenomic effect of polyunsaturated LCFA (PUFA) on milk fat related genes, particularly for CLA (permitting effect) and DHA (blocking effect).

Original languageEnglish (US)
Article number54
JournalVeterinary Sciences
Volume6
Issue number2
DOIs
StatePublished - Jun 1 2019

Keywords

  • Goat mammary epithelial cells
  • LCFA
  • Milk fat synthesis
  • Nutrigenomics
  • Peroxisome proliferator-activated receptor gamma (PPARγ)

ASJC Scopus subject areas

  • General Veterinary

Fingerprint

Dive into the research topics of 'Nutrigenomic effect of saturated and unsaturated long chain fatty acids on lipid-related genes in goat mammary epithelial cells: What is the role of PPARγ?'. Together they form a unique fingerprint.

Cite this