Numerical Study and Parameter Optimization on a Diesel - Natural Gas Dual Fuel Engine

Mianzhi Wang, Zhengxin Xu, Menghan Li, Chia Fon Lee

Research output: Contribution to journalConference articlepeer-review

Abstract

This work presents a comprehensive computational study of diesel - natural gas (NG) dual fuel engine. A complete computational model is developed for the operation of a diesel - NG dual fuel engine modified from an AVL 5402 single cylinder diesel test engine. The model is based on the KIVA-3V program and includes customized sub-models. The model is validated against test cell measurements of both pure diesel and dual fuel operation. The effects of NG on ignition and combustion in dual fuel operation are analyzed in detail. Zero-dimensional computations with a diesel surrogate reaction mechanism are conducted to discover the effects of NG on ignition and combustion and to reveal the fundamental chemical mechanisms behind such effects. Backed by the detailed theoretical analysis, the engine operation parameters are optimized with genetic algorithm (GA) for the dual fuel operation of the modified AVL 5402 test engine.

Original languageEnglish (US)
JournalSAE Technical Papers
Volume2016-April
Issue numberApril
DOIs
StatePublished - Apr 5 2016
EventSAE 2016 World Congress and Exhibition - Detroit, United States
Duration: Apr 12 2016Apr 14 2016

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Numerical Study and Parameter Optimization on a Diesel - Natural Gas Dual Fuel Engine'. Together they form a unique fingerprint.

Cite this