Numerical solution of some three-state random vibration problems

S. F. Wojtkiewicz, L. A. Bergman, B. F. Spencer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper reports some of the recent efforts by the authors to examine the random vibration of mechanical systems of large dimension. A finite element solution method for the stationary three-dimensional Fokker-Planck equation, employing sparse storage and iterative solution strategies, is outlined and then applied to several representative systems. The first of these is a linear oscillator subjected to a first order linearly filtered Gaussian white noise process. This problem is used to verify and assess the accuracy of the method. After verification, two Duffing systems are analyzed, one exhibiting unimodal and the other bimodal response characteristics. Finally, some comparisons of the finite element results with those from Monte Carlo simulation are made for the two nonlinear systems.

Original languageEnglish (US)
Title of host publication15th Biennial Conference on Mechanical Vibration and Noise - Vibration of Nonlinear, Random, and Time-Varying Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages939-947
Number of pages9
ISBN (Electronic)9780791817186
DOIs
StatePublished - 1995
EventASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium - Boston, United States
Duration: Sep 17 1995Sep 20 1995

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3A-1995

Conference

ConferenceASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium
Country/TerritoryUnited States
CityBoston
Period9/17/959/20/95

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Numerical solution of some three-state random vibration problems'. Together they form a unique fingerprint.

Cite this