Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation

Purushotam Kumar, Kai Jin, Surya Pratap Vanka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we have applied a recently-developed numerical technique to study the three-dimensional dynamics of a confined air bubble rising in shear thinning and shear-thickening power-law fluids. The method is a blend of Volume of Fluid and Level Set methods and incorporates a Sharp Surface Force Method (SSF) for surface tension forces by solving a second Pressure Poisson Equation (PPE). The gas-liquid interface is captured by an equation for the liquid volume fraction and advected using the geometry reconstruction method. The interface normal and curvature are computed using level-set and height function methods. The accurate representation of the interface and interfacial forces significantly suppressed the spurious velocities commonly observed with conventional volume of fluid method and the Continuum Surface Force (CSF). The algorithm is implemented in a in-house code called CUFLOW and runs on multiple GPUs platform. We explored the effects of fluid rheology, Bond number, and wall confinement on bubble’s transient shape, rise velocity, rise path, and generated vortex structures. The power-law index is varied from 0.25 to 1.50 covering shear-thinning and shear-thickening regimes. Three Bond numbers (Bo = 2, 10 and 50) and three confinement ratios (Cr = 4, 6 and 8) are considered, and their impacts on bubble’s dynamics are analyzed. For the range of parameters examined here, bubble motion in a shear-thinning fluid is seen to be unsteady with significant shape oscillations. The bubble rises with a secondary motion in the cross-sectional plane along with its primary vertical rise. However, in the Newtonian and shear-thickening fluids, the bubble’s shape is seen to reach a steady-state in a relatively short time and rise with only minor deviations from the vertical path.

Original languageEnglish (US)
Title of host publicationMultiphase Flow
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859087
DOIs
StatePublished - Jan 1 2019
EventASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019 - San Francisco, United States
Duration: Jul 28 2019Aug 1 2019

Publication series

NameASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Volume5

Conference

ConferenceASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
CountryUnited States
CitySan Francisco
Period7/28/198/1/19

Fingerprint

Gases
Fluids
Shear thinning
Computer simulation
Poisson equation
Liquids
Rheology
Surface tension
Volume fraction
Vortex flow
Geometry
Air

Keywords

  • Bubble rise
  • GPU computing
  • Multiphase flow
  • Non-Newtonian fluid
  • Sharp surface force method
  • Volume of fluid

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Cite this

Kumar, P., Jin, K., & Vanka, S. P. (2019). Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation. In Multiphase Flow (ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019; Vol. 5). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/AJKFluids2019-4769

Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation. / Kumar, Purushotam; Jin, Kai; Vanka, Surya Pratap.

Multiphase Flow. American Society of Mechanical Engineers (ASME), 2019. (ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019; Vol. 5).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Kumar, P, Jin, K & Vanka, SP 2019, Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation. in Multiphase Flow. ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019, vol. 5, American Society of Mechanical Engineers (ASME), ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019, San Francisco, United States, 7/28/19. https://doi.org/10.1115/AJKFluids2019-4769
Kumar P, Jin K, Vanka SP. Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation. In Multiphase Flow. American Society of Mechanical Engineers (ASME). 2019. (ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019). https://doi.org/10.1115/AJKFluids2019-4769
Kumar, Purushotam ; Jin, Kai ; Vanka, Surya Pratap. / Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation. Multiphase Flow. American Society of Mechanical Engineers (ASME), 2019. (ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019).
@inproceedings{0bf5d1a2b947415fb3706fd736eb719b,
title = "Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation",
abstract = "In this paper, we have applied a recently-developed numerical technique to study the three-dimensional dynamics of a confined air bubble rising in shear thinning and shear-thickening power-law fluids. The method is a blend of Volume of Fluid and Level Set methods and incorporates a Sharp Surface Force Method (SSF) for surface tension forces by solving a second Pressure Poisson Equation (PPE). The gas-liquid interface is captured by an equation for the liquid volume fraction and advected using the geometry reconstruction method. The interface normal and curvature are computed using level-set and height function methods. The accurate representation of the interface and interfacial forces significantly suppressed the spurious velocities commonly observed with conventional volume of fluid method and the Continuum Surface Force (CSF). The algorithm is implemented in a in-house code called CUFLOW and runs on multiple GPUs platform. We explored the effects of fluid rheology, Bond number, and wall confinement on bubble’s transient shape, rise velocity, rise path, and generated vortex structures. The power-law index is varied from 0.25 to 1.50 covering shear-thinning and shear-thickening regimes. Three Bond numbers (Bo = 2, 10 and 50) and three confinement ratios (Cr = 4, 6 and 8) are considered, and their impacts on bubble’s dynamics are analyzed. For the range of parameters examined here, bubble motion in a shear-thinning fluid is seen to be unsteady with significant shape oscillations. The bubble rises with a secondary motion in the cross-sectional plane along with its primary vertical rise. However, in the Newtonian and shear-thickening fluids, the bubble’s shape is seen to reach a steady-state in a relatively short time and rise with only minor deviations from the vertical path.",
keywords = "Bubble rise, GPU computing, Multiphase flow, Non-Newtonian fluid, Sharp surface force method, Volume of fluid",
author = "Purushotam Kumar and Kai Jin and Vanka, {Surya Pratap}",
year = "2019",
month = "1",
day = "1",
doi = "10.1115/AJKFluids2019-4769",
language = "English (US)",
series = "ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019",
publisher = "American Society of Mechanical Engineers (ASME)",
booktitle = "Multiphase Flow",

}

TY - GEN

T1 - Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation

AU - Kumar, Purushotam

AU - Jin, Kai

AU - Vanka, Surya Pratap

PY - 2019/1/1

Y1 - 2019/1/1

N2 - In this paper, we have applied a recently-developed numerical technique to study the three-dimensional dynamics of a confined air bubble rising in shear thinning and shear-thickening power-law fluids. The method is a blend of Volume of Fluid and Level Set methods and incorporates a Sharp Surface Force Method (SSF) for surface tension forces by solving a second Pressure Poisson Equation (PPE). The gas-liquid interface is captured by an equation for the liquid volume fraction and advected using the geometry reconstruction method. The interface normal and curvature are computed using level-set and height function methods. The accurate representation of the interface and interfacial forces significantly suppressed the spurious velocities commonly observed with conventional volume of fluid method and the Continuum Surface Force (CSF). The algorithm is implemented in a in-house code called CUFLOW and runs on multiple GPUs platform. We explored the effects of fluid rheology, Bond number, and wall confinement on bubble’s transient shape, rise velocity, rise path, and generated vortex structures. The power-law index is varied from 0.25 to 1.50 covering shear-thinning and shear-thickening regimes. Three Bond numbers (Bo = 2, 10 and 50) and three confinement ratios (Cr = 4, 6 and 8) are considered, and their impacts on bubble’s dynamics are analyzed. For the range of parameters examined here, bubble motion in a shear-thinning fluid is seen to be unsteady with significant shape oscillations. The bubble rises with a secondary motion in the cross-sectional plane along with its primary vertical rise. However, in the Newtonian and shear-thickening fluids, the bubble’s shape is seen to reach a steady-state in a relatively short time and rise with only minor deviations from the vertical path.

AB - In this paper, we have applied a recently-developed numerical technique to study the three-dimensional dynamics of a confined air bubble rising in shear thinning and shear-thickening power-law fluids. The method is a blend of Volume of Fluid and Level Set methods and incorporates a Sharp Surface Force Method (SSF) for surface tension forces by solving a second Pressure Poisson Equation (PPE). The gas-liquid interface is captured by an equation for the liquid volume fraction and advected using the geometry reconstruction method. The interface normal and curvature are computed using level-set and height function methods. The accurate representation of the interface and interfacial forces significantly suppressed the spurious velocities commonly observed with conventional volume of fluid method and the Continuum Surface Force (CSF). The algorithm is implemented in a in-house code called CUFLOW and runs on multiple GPUs platform. We explored the effects of fluid rheology, Bond number, and wall confinement on bubble’s transient shape, rise velocity, rise path, and generated vortex structures. The power-law index is varied from 0.25 to 1.50 covering shear-thinning and shear-thickening regimes. Three Bond numbers (Bo = 2, 10 and 50) and three confinement ratios (Cr = 4, 6 and 8) are considered, and their impacts on bubble’s dynamics are analyzed. For the range of parameters examined here, bubble motion in a shear-thinning fluid is seen to be unsteady with significant shape oscillations. The bubble rises with a secondary motion in the cross-sectional plane along with its primary vertical rise. However, in the Newtonian and shear-thickening fluids, the bubble’s shape is seen to reach a steady-state in a relatively short time and rise with only minor deviations from the vertical path.

KW - Bubble rise

KW - GPU computing

KW - Multiphase flow

KW - Non-Newtonian fluid

KW - Sharp surface force method

KW - Volume of fluid

UR - http://www.scopus.com/inward/record.url?scp=85076461186&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85076461186&partnerID=8YFLogxK

U2 - 10.1115/AJKFluids2019-4769

DO - 10.1115/AJKFluids2019-4769

M3 - Conference contribution

AN - SCOPUS:85076461186

T3 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019

BT - Multiphase Flow

PB - American Society of Mechanical Engineers (ASME)

ER -