TY - GEN
T1 - Numerical simulation of a gas bubble rising in power-law fluids using a sharp surface force implementation
AU - Kumar, Purushotam
AU - Jin, Kai
AU - Vanka, Surya Pratap
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - In this paper, we have applied a recently-developed numerical technique to study the three-dimensional dynamics of a confined air bubble rising in shear thinning and shear-thickening power-law fluids. The method is a blend of Volume of Fluid and Level Set methods and incorporates a Sharp Surface Force Method (SSF) for surface tension forces by solving a second Pressure Poisson Equation (PPE). The gas-liquid interface is captured by an equation for the liquid volume fraction and advected using the geometry reconstruction method. The interface normal and curvature are computed using level-set and height function methods. The accurate representation of the interface and interfacial forces significantly suppressed the spurious velocities commonly observed with conventional volume of fluid method and the Continuum Surface Force (CSF). The algorithm is implemented in a in-house code called CUFLOW and runs on multiple GPUs platform. We explored the effects of fluid rheology, Bond number, and wall confinement on bubble’s transient shape, rise velocity, rise path, and generated vortex structures. The power-law index is varied from 0.25 to 1.50 covering shear-thinning and shear-thickening regimes. Three Bond numbers (Bo = 2, 10 and 50) and three confinement ratios (Cr = 4, 6 and 8) are considered, and their impacts on bubble’s dynamics are analyzed. For the range of parameters examined here, bubble motion in a shear-thinning fluid is seen to be unsteady with significant shape oscillations. The bubble rises with a secondary motion in the cross-sectional plane along with its primary vertical rise. However, in the Newtonian and shear-thickening fluids, the bubble’s shape is seen to reach a steady-state in a relatively short time and rise with only minor deviations from the vertical path.
AB - In this paper, we have applied a recently-developed numerical technique to study the three-dimensional dynamics of a confined air bubble rising in shear thinning and shear-thickening power-law fluids. The method is a blend of Volume of Fluid and Level Set methods and incorporates a Sharp Surface Force Method (SSF) for surface tension forces by solving a second Pressure Poisson Equation (PPE). The gas-liquid interface is captured by an equation for the liquid volume fraction and advected using the geometry reconstruction method. The interface normal and curvature are computed using level-set and height function methods. The accurate representation of the interface and interfacial forces significantly suppressed the spurious velocities commonly observed with conventional volume of fluid method and the Continuum Surface Force (CSF). The algorithm is implemented in a in-house code called CUFLOW and runs on multiple GPUs platform. We explored the effects of fluid rheology, Bond number, and wall confinement on bubble’s transient shape, rise velocity, rise path, and generated vortex structures. The power-law index is varied from 0.25 to 1.50 covering shear-thinning and shear-thickening regimes. Three Bond numbers (Bo = 2, 10 and 50) and three confinement ratios (Cr = 4, 6 and 8) are considered, and their impacts on bubble’s dynamics are analyzed. For the range of parameters examined here, bubble motion in a shear-thinning fluid is seen to be unsteady with significant shape oscillations. The bubble rises with a secondary motion in the cross-sectional plane along with its primary vertical rise. However, in the Newtonian and shear-thickening fluids, the bubble’s shape is seen to reach a steady-state in a relatively short time and rise with only minor deviations from the vertical path.
KW - Bubble rise
KW - GPU computing
KW - Multiphase flow
KW - Non-Newtonian fluid
KW - Sharp surface force method
KW - Volume of fluid
UR - http://www.scopus.com/inward/record.url?scp=85076461186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076461186&partnerID=8YFLogxK
U2 - 10.1115/AJKFluids2019-4769
DO - 10.1115/AJKFluids2019-4769
M3 - Conference contribution
AN - SCOPUS:85076461186
T3 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
BT - Multiphase Flow
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Y2 - 28 July 2019 through 1 August 2019
ER -