Numerical modelling of local scour around a spur dike with porous media method

Xun Han, Pengzhi Lin, Gary Parker

Research output: Contribution to journalArticlepeer-review

Abstract

A 3D numerical model is developed to investigate the flow motion and sediment transport around a spur dike. In this model, fluid motion is described by the Navier–Stokes equations, adopting large eddy simulation to capture turbulent transport and dissipation. The spur dike and sand bed are treated by the porous media method. The suspended load concentration and the bed load transport rate is calculated separately, and then the bed variation is updated using the mass-balance equation. A series of flume experiments are employed to validate the model’s performance before being applied for the case of partially emergent spur dikes and submerged spur dikes, respectively. Detailed analyses on the spatial-temporal variation of flow intensity, sediment concentration and shapes of scour holes are made, based on which some innovative findings are discussed such as the scouring process patterns, as well as the influence of flow conditions on the maximum scour depth and location, and then useful engineering suggestions are provided to improve structural safety.

Original languageEnglish (US)
Pages (from-to)970-995
Number of pages26
JournalJournal of Hydraulic Research
Volume60
Issue number6
DOIs
StatePublished - 2022

Keywords

  • Flow–structure interaction
  • local scour
  • numerical simulation
  • spur dike
  • three-dimensional model

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Numerical modelling of local scour around a spur dike with porous media method'. Together they form a unique fingerprint.

Cite this