Numerical and experimental analysis of the nonlinear dynamics due to impacts of a continuous overhung rotor

Mohammed F.Abdul Azeez, Alexander F. Vakakis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work is aimed at obtaining the transient response of an overhung rotor when there are impacts occurring in the system. An overhung rotor clamped on one end, with a ywheel on the other and impacts occurring in between, due to a bearing with clearance, is considered. The system is modeled as a continuous rotor system and the governing partial differential equations are set up and solved. The method of assumed modes is used to discretize the system in order to solve the partial differential equations. Using this method numerical experiments are run and a few of the results are presented. The different numerical issues involved are also discussed. An experimental setup was built to run experiments and validate the results. Preliminary experimental observations are presented to show qualitative comparison of theory and experiments.

Original languageEnglish (US)
Title of host publication16th Biennial Conference on Mechanical Vibration and Noise
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791880432
DOIs
StatePublished - 1997
Externally publishedYes
EventASME 1997 Design Engineering Technical Conferences, DETC 1997 - Sacramento, United States
Duration: Sep 14 1997Sep 17 1997

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume1D-1997

Conference

ConferenceASME 1997 Design Engineering Technical Conferences, DETC 1997
Country/TerritoryUnited States
CitySacramento
Period9/14/979/17/97

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Numerical and experimental analysis of the nonlinear dynamics due to impacts of a continuous overhung rotor'. Together they form a unique fingerprint.

Cite this