Novel Method for Nitrogen Isotopic Analysis of Soil-Emitted Nitric Oxide

Zhongjie Yu, Emily M. Elliott

Research output: Contribution to journalArticlepeer-review

Abstract

The global inventory of NOx (NOx = NO + NO2) emissions is poorly constrained, with a large portion of the uncertainty attributed to soil NO emissions that result from soil abiotic and microbial processes. While natural abundance stable N isotopes (δ15N) in various soil N-containing compounds have proven to be a robust tracer of soil N cycling, soil δ15N-NO is rarely quantified due to the measurement difficulties. Here, we present a new method that collects soil-emitted NO through NO conversion to NO2 in excess ozone (O3) and subsequent NO2 collection in a 20% triethanolamine (TEA) solution as nitrite and nitrate for δ15N analysis using the denitrifier method. The precision and accuracy of the method were quantified through repeated collection of an analytical NO tank and intercalibration with a modified EPA NOx collection method. The results show that the efficiency of NO conversion to NO2 and subsequent NO2 collection in the TEA solution is >98% under a variety of controlled conditions. The method precision (1σ) and accuracy across the entire analytical procedure are ±1.1‰. We report the first analyses of soil δ15N-NO (-59.8‰ to -23.4‰) from wetting-induced NO pulses at both laboratory and field scales that have important implications for understanding soil NO dynamics. (Chemical Equation Presented).

Original languageEnglish (US)
Pages (from-to)6268-6278
Number of pages11
JournalEnvironmental Science and Technology
Volume51
Issue number11
DOIs
StatePublished - Jun 6 2017
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Fingerprint Dive into the research topics of 'Novel Method for Nitrogen Isotopic Analysis of Soil-Emitted Nitric Oxide'. Together they form a unique fingerprint.

Cite this