Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy

Srijayaprakash B. Uppada, Terrianne Erickson, Luke Wojdyla, David N. Moravec, Ziyuan Song, Jianjun Cheng, Neelu Puri

Research output: Contribution to journalArticle

Abstract

Oligonucleotides homologous to 3′-telomere overhang (T-oligos) trigger inherent telomere-based DNA damage responses mediated by p53 and/or ATM and induce senescence or apoptosis in various cancerous cells. However, T-oligo has limited stability in vivo due to serum and intracellular nucleases. To develop T-oligo as an innovative, effective therapeutic drug and to understand its mechanism of action, we investigated the antitumor effects of T-oligo or T-oligo complexed with a novel cationic alpha helical peptide, PVBLG-8 (PVBLG), in a p53 null melanoma cell line both in vitro and in vivo. The uptake of T-oligo by MM-AN cells was confirmed by immunofuorescence, and fuorescence-activated cell sorting analysis indicated that the T-oligo-PVBLG nanocomplex increased uptake by 15-fold. In vitro results showed a 3-fold increase in MM-AN cell growth inhibition by the T-oligo-PVBLG nanocomplex compared with T-oligo alone. Treatment of preformed tumors in immuno deficient mice with the T-oligo-PVBLG nanocomplex resulted in a 3-fold reduction in tumor volume compared with T-oligo alone. This reduction in tumor volume was associated with decreased vascular endothelial growth factor expression and induction of thrombospondin-1 expression and apoptosis. Moreover, T-oligo treatment downregulated procaspase-3 and procaspase-7 and increased catalytic activity of caspase-3 by 4-fold in MM-AN cells. Furthermore, T-oligo induced a 10-fold increase of senescence and upregulated the melanoma tumor-associated antigens MART-1, tyrosinase, and thrombospondin-1 in MM-AN cells, which are currently being targeted for melanoma immunotherapy. Interestingly, siRNA-mediated knockdown of p73 (4-10-fold) abolished this upregulation of tumor-associated antigens. In summary, we suggest a key role of p73 in mediating the anticancer effects of T-oligo and introduce a novel nanoparticle, the T-oligo-PVBLG nanocomplex, as an effective anticancer therapeutic.

Original languageEnglish (US)
Pages (from-to)43-53
Number of pages11
JournalInternational journal of nanomedicine
Volume9
Issue number1
DOIs
StatePublished - Dec 17 2013

Keywords

  • Angiogenesis
  • Apoptosis
  • Melanoma
  • Senescence
  • T-oligo

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Organic Chemistry
  • Drug Discovery

Fingerprint Dive into the research topics of 'Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy'. Together they form a unique fingerprint.

  • Cite this