TY - JOUR
T1 - Normalization, bias correction, and peak calling for ChIP-seq.
AU - Diaz, Aaron
AU - Park, Kiyoub
AU - Lim, Daniel A.
AU - Song, Jun S.
N1 - Funding Information:
Author Notes: We would like to thank Henrik Bengtsson, Adam Olshen, Ritu Roy, Taku Tokuyasu, Mark Segal, Saunak Sen, Barry Taylor, Yuanyuan Xiao, and Hao Xiong for helpful discussions. This project was in part supported by a Sontag Foundation award and NIH DP2OD006505 to DAL and by grants from the PhRMA Foundation, UCSF RAP, UCSF Academic Senate, the Sontag Foundation, and the National Cancer Institute (R01CA163336) to JSS. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health
PY - 2012
Y1 - 2012
N2 - Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods.
AB - Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods.
UR - http://www.scopus.com/inward/record.url?scp=84864956117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864956117&partnerID=8YFLogxK
U2 - 10.1515/1544-6115.1750
DO - 10.1515/1544-6115.1750
M3 - Article
C2 - 22499706
AN - SCOPUS:84864956117
SN - 1544-6115
VL - 11
SP - Article 9
JO - Statistical applications in genetics and molecular biology
JF - Statistical applications in genetics and molecular biology
IS - 3
ER -