Norm Invariance of Minimax Interpolation

N. Parker Willis, Yoram Bresler

Research output: Contribution to journalArticle

Abstract

Minimax-optimal interpolation algorithms minimize the error resulting from the worst signal from an allowable class. The result is presented that if this class lies in a Hilbert space, the minimax-optimal algorithm is independent of or invariant to the error norm. The result encompasses a broad class of inverse problems.

Original languageEnglish (US)
Pages (from-to)1177-1181
Number of pages5
JournalIEEE Transactions on Information Theory
Volume38
Issue number3
DOIs
StatePublished - May 1992

Fingerprint

Invariance
Interpolation
Hilbert spaces
Inverse problems

Keywords

  • Hilbert space
  • Optimal interpolation
  • approximation
  • inverse-problems
  • pseudo-inverse

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Cite this

Norm Invariance of Minimax Interpolation. / Willis, N. Parker; Bresler, Yoram.

In: IEEE Transactions on Information Theory, Vol. 38, No. 3, 05.1992, p. 1177-1181.

Research output: Contribution to journalArticle

Willis, N. Parker ; Bresler, Yoram. / Norm Invariance of Minimax Interpolation. In: IEEE Transactions on Information Theory. 1992 ; Vol. 38, No. 3. pp. 1177-1181.
@article{e7d2dde7695c487e8fe85dbcbea94459,
title = "Norm Invariance of Minimax Interpolation",
abstract = "Minimax-optimal interpolation algorithms minimize the error resulting from the worst signal from an allowable class. The result is presented that if this class lies in a Hilbert space, the minimax-optimal algorithm is independent of or invariant to the error norm. The result encompasses a broad class of inverse problems.",
keywords = "Hilbert space, Optimal interpolation, approximation, inverse-problems, pseudo-inverse",
author = "Willis, {N. Parker} and Yoram Bresler",
year = "1992",
month = "5",
doi = "10.1109/18.135664",
language = "English (US)",
volume = "38",
pages = "1177--1181",
journal = "IEEE Transactions on Information Theory",
issn = "0018-9448",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "3",

}

TY - JOUR

T1 - Norm Invariance of Minimax Interpolation

AU - Willis, N. Parker

AU - Bresler, Yoram

PY - 1992/5

Y1 - 1992/5

N2 - Minimax-optimal interpolation algorithms minimize the error resulting from the worst signal from an allowable class. The result is presented that if this class lies in a Hilbert space, the minimax-optimal algorithm is independent of or invariant to the error norm. The result encompasses a broad class of inverse problems.

AB - Minimax-optimal interpolation algorithms minimize the error resulting from the worst signal from an allowable class. The result is presented that if this class lies in a Hilbert space, the minimax-optimal algorithm is independent of or invariant to the error norm. The result encompasses a broad class of inverse problems.

KW - Hilbert space

KW - Optimal interpolation

KW - approximation

KW - inverse-problems

KW - pseudo-inverse

UR - http://www.scopus.com/inward/record.url?scp=0026866061&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026866061&partnerID=8YFLogxK

U2 - 10.1109/18.135664

DO - 10.1109/18.135664

M3 - Article

AN - SCOPUS:0026866061

VL - 38

SP - 1177

EP - 1181

JO - IEEE Transactions on Information Theory

JF - IEEE Transactions on Information Theory

SN - 0018-9448

IS - 3

ER -