Abstract
A k-decomposition (G1,..., Gk) of a graph G is a partition of its edge set to form k spanning subgraphs G1,..., G k. The classical theorem of Nordhaus and Gaddum bounds χ(G 1) + χ(G2) and χ(G1)χ(G 2z) over all 2-decompositions of kn. For a graph parameter p, let p(k;G) denote the maximum of Σi=1k p(Gi/) over all k-decompositions of the graph G. The clique number Ω, chromatic number χ, list chromatic number χl, and Szekeres-Wilf number σ satisfy ω(2;Kn) = χ(2;K n) = χl(2;Kn) = σ(2;Kn) = n + 1. We obtain lower and upper bounds for ω(k;K n),χ(k;Kn),χl(k;Kn), and σ(k;Kn). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of χ(k;G) over all graphs embedded on a given surface.
Original language | English (US) |
---|---|
Pages (from-to) | 273-292 |
Number of pages | 20 |
Journal | Journal of Graph Theory |
Volume | 50 |
Issue number | 4 |
DOIs | |
State | Published - Dec 2005 |
Keywords
- Chromatic number
- Coloring number
- Graph decomposition
- List chromatic number
- Nordhaus-Gaddum Theorem
- Surface embedding
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics
- Geometry and Topology