TY - JOUR
T1 - Nonstructural protein 11 of porcine reproductive and respiratory syndrome virus suppresses both MAVS and RIG-I expression as one of the mechanisms to antagonize Type I interferon production
AU - Sun, Yan
AU - Ke, Hanzhong
AU - Han, Mingyuan
AU - Chen, Ning
AU - Fang, Weihuan
AU - Yoo, Dongwan
N1 - Publisher Copyright:
© 2016 Sun et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/12
Y1 - 2016/12
N2 - Type I interferons (IFN-a/ß) play a key role in antiviral defense, and porcine reproductive and respiratory syndrome virus (PRRSV) is known to down-regulate the IFN response in virus-infected cells and pigs. In this study, we showed that the overexpression of nsp11 of PRRSV induced a strong suppression of IFN production. Nsp11 suppressed both IRF3 and NF-?B activities when stimulated with a dsRNA analogue and TNF-a, respectively. This suppression was RLR dependent, since the transcripts and proteins of MAVS and RIG-I, two critical factors in RLR-mediated pathway, were both found to be reduced in the presence of overexpressed nsp11. Since nsp11 is an endoribonuclease (EndoU), the structure function relationship was examined using a series of nsp11 EndoU mutant plasmids. The mutants that impaired the EndoU activity failed to suppress IFN and led to the normal expression of MAVS. Seven single amino acid substitutions (4 in subdomain A and 3 in subdomain B) plus one insertion (frame-shift in nsp11) were then introduced into PRRSV infectious cDNA clones to generate nsp11 mutant viruses. Unfortunately, all EndoU knock-out nsp11 mutant viruses appeared replication-defective and no progenies were produced. Three mutations in EndoU subdomain A expressed the N and nsp2/3 proteins but their infectivity diminished after 2 passages. Taken together, our data show that PRRSV nsp11 endoribonuclease activity is critical for both viral replication and IFN antagonism. More importantly, the endoribonuclease activity of nsp11 demonstrates the substrate specificity towards MAVS and RIG-I (transcripts and proteins) over p65 and IRF3 in the context of gene transfection and overexpression. This is likely a mechanism of nsp11 suppression of type I IFN production.
AB - Type I interferons (IFN-a/ß) play a key role in antiviral defense, and porcine reproductive and respiratory syndrome virus (PRRSV) is known to down-regulate the IFN response in virus-infected cells and pigs. In this study, we showed that the overexpression of nsp11 of PRRSV induced a strong suppression of IFN production. Nsp11 suppressed both IRF3 and NF-?B activities when stimulated with a dsRNA analogue and TNF-a, respectively. This suppression was RLR dependent, since the transcripts and proteins of MAVS and RIG-I, two critical factors in RLR-mediated pathway, were both found to be reduced in the presence of overexpressed nsp11. Since nsp11 is an endoribonuclease (EndoU), the structure function relationship was examined using a series of nsp11 EndoU mutant plasmids. The mutants that impaired the EndoU activity failed to suppress IFN and led to the normal expression of MAVS. Seven single amino acid substitutions (4 in subdomain A and 3 in subdomain B) plus one insertion (frame-shift in nsp11) were then introduced into PRRSV infectious cDNA clones to generate nsp11 mutant viruses. Unfortunately, all EndoU knock-out nsp11 mutant viruses appeared replication-defective and no progenies were produced. Three mutations in EndoU subdomain A expressed the N and nsp2/3 proteins but their infectivity diminished after 2 passages. Taken together, our data show that PRRSV nsp11 endoribonuclease activity is critical for both viral replication and IFN antagonism. More importantly, the endoribonuclease activity of nsp11 demonstrates the substrate specificity towards MAVS and RIG-I (transcripts and proteins) over p65 and IRF3 in the context of gene transfection and overexpression. This is likely a mechanism of nsp11 suppression of type I IFN production.
UR - http://www.scopus.com/inward/record.url?scp=85006913794&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006913794&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0168314
DO - 10.1371/journal.pone.0168314
M3 - Article
C2 - 27997564
AN - SCOPUS:85006913794
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 12
M1 - e0168314
ER -