Abstract

A large-aperture, electromagnetic model for coherent microscopy is presented and the inverse scattering problem is solved. Approximations to the model are developed for near-focus and far-from-focus operations. These approximations result in an image-reconstruction algorithm consistent with interferometric synthetic aperture microscopy (ISAM): this validates ISAM processing of optical-coherence-tomography and optical-coherence-microscopy data in a vectorial setting. Numerical simulations confirm that diffraction-limited resolution can be achieved outside the focal plane and that depth of focus is limited only by measurement noise and/or detector dynamic range. Furthermore, the model presented is suitable for the quantitative study of polarimetric coherent microscopy systems operating within the first Born approximation.

Original languageEnglish (US)
Pages (from-to)2527-2542
Number of pages16
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume24
Issue number9
DOIs
StatePublished - Sep 2007

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy'. Together they form a unique fingerprint.

Cite this