Nonlinear transient localization and beat phenomena due to backlash in a coupled flexible system

Xianghong Ma, Alexander F. Vakakis

Research output: Contribution to conferencePaperpeer-review

Abstract

Transient nonlinear localization and beat phenomena are studied in a system of two rods coupled with a nonlinear backlash spring. The method of Karhunen-Loeve (K-L) decomposition is used to reduce the order of the dynamics, and to study nonlinear effects by considering energy transfers between leading K-L modes. The computed K-L modes are used to discretize the governing partial differential equations, thus creating accurate and computationally efficient low-dimensional nonlinear models of the system. Reconstruction of transient nonlinear responses using these low dimensional models reveals the accuracy of the order reduction. Poincare' maps are utilized to study the nonlinear localization and beat phenomena caused by the clearance connecting the coupled rods.

Original languageEnglish (US)
Pages1207-1217
Number of pages11
StatePublished - 2001
Event18th Biennial Conference on Mechanical Vibration and Noise - Pittsburgh, PA, United States
Duration: Sep 9 2001Sep 12 2001

Other

Other18th Biennial Conference on Mechanical Vibration and Noise
Country/TerritoryUnited States
CityPittsburgh, PA
Period9/9/019/12/01

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Nonlinear transient localization and beat phenomena due to backlash in a coupled flexible system'. Together they form a unique fingerprint.

Cite this