Nonlinear machine learning and design of reconfigurable digital colloids

Andrew W. Long, Carolyn L. Phillips, Eric Jankowksi, Andrew L. Ferguson

Research output: Contribution to journalArticlepeer-review

Abstract

Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

Original languageEnglish (US)
Pages (from-to)7119-7135
Number of pages17
JournalSoft Matter
Volume12
Issue number34
DOIs
StatePublished - 2016

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Nonlinear machine learning and design of reconfigurable digital colloids'. Together they form a unique fingerprint.

Cite this