TY - JOUR
T1 - Nonclassical cold-frontal structure caused by dry subcloud air in Northern Utah during the Intermountain Precipitation Experiment (IPEX)
AU - Schultz, David M.
AU - Trapp, Robert J.
PY - 2003/10
Y1 - 2003/10
N2 - The purpose of the Intermountain Precipitation Experiment (IPEX) is to improve understanding of precipitating systems in the Intermountain West. Instrumentation deployed during the field phase of IPEX sampled a strong cold front and associated convection that moved through northern Utah on 14-15 February 2000. The surface cold front was characterized by a sharp temperature drop (8°C in 8 min), strong pressure rise (3 hPa in 30 min), and gusts to 40 m s 1. The temperature drop at high-elevation surface stations (2500-3000 in MSL) preceded the temperature drop at low-elevation surface stations (1290-2000 m MSL) by as much as an hour, implying a forward- or downshear-tilting frontal structure. Consistent with the cooling aloft, a hydrostatic pressure rise and wind shift preceded the temperature drop at the surface. Radar captured the rapid evolution of the wind shift line into a gravity current. A forward-sloping cloud with mammatus and a 20-hPa-deep superadiabatic layer underneath were observed by radar and radiosondes, respectively. Shading from this forward-sloping cloud is believed to have produced a surface-based prefrontal inversion upon which a solitary gravity wave traveled. These and other observations reveal that the forward-sloping cloud generated by a shortwave trough aloft was producing precipitation that sublimated, melted, and evaporated in the dry subcloud air (dewpoint depression of 5°-10°C), causing the cooling aloft and the nonclassical frontal structure. Although the storm-total precipitation associated with this system was generally light (less than 20 mm at all observing sites), the amount of precipitation was strongly a function of elevation. During one 6-h period, precipitation at stations above cloud base (roughly 2000 m MSL) varied widely, mostly due to orographic effects, although precipitation amounts at most stations were about 7-11 mm. In contrast, precipitation amounts decreased with distance below cloud base, consistent with sublimation and evaporation in the dry subcloud air.
AB - The purpose of the Intermountain Precipitation Experiment (IPEX) is to improve understanding of precipitating systems in the Intermountain West. Instrumentation deployed during the field phase of IPEX sampled a strong cold front and associated convection that moved through northern Utah on 14-15 February 2000. The surface cold front was characterized by a sharp temperature drop (8°C in 8 min), strong pressure rise (3 hPa in 30 min), and gusts to 40 m s 1. The temperature drop at high-elevation surface stations (2500-3000 in MSL) preceded the temperature drop at low-elevation surface stations (1290-2000 m MSL) by as much as an hour, implying a forward- or downshear-tilting frontal structure. Consistent with the cooling aloft, a hydrostatic pressure rise and wind shift preceded the temperature drop at the surface. Radar captured the rapid evolution of the wind shift line into a gravity current. A forward-sloping cloud with mammatus and a 20-hPa-deep superadiabatic layer underneath were observed by radar and radiosondes, respectively. Shading from this forward-sloping cloud is believed to have produced a surface-based prefrontal inversion upon which a solitary gravity wave traveled. These and other observations reveal that the forward-sloping cloud generated by a shortwave trough aloft was producing precipitation that sublimated, melted, and evaporated in the dry subcloud air (dewpoint depression of 5°-10°C), causing the cooling aloft and the nonclassical frontal structure. Although the storm-total precipitation associated with this system was generally light (less than 20 mm at all observing sites), the amount of precipitation was strongly a function of elevation. During one 6-h period, precipitation at stations above cloud base (roughly 2000 m MSL) varied widely, mostly due to orographic effects, although precipitation amounts at most stations were about 7-11 mm. In contrast, precipitation amounts decreased with distance below cloud base, consistent with sublimation and evaporation in the dry subcloud air.
UR - http://www.scopus.com/inward/record.url?scp=0242583157&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242583157&partnerID=8YFLogxK
U2 - 10.1175/1520-0493(2003)131<2222:NCSCBD>2.0.CO;2
DO - 10.1175/1520-0493(2003)131<2222:NCSCBD>2.0.CO;2
M3 - Article
AN - SCOPUS:0242583157
SN - 0027-0644
VL - 131
SP - 2222
EP - 2246
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 10
ER -