Abstract
Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.
Original language | English (US) |
---|---|
Article number | 110500 |
Journal | Cell Reports |
Volume | 38 |
Issue number | 10 |
DOIs | |
State | Published - Mar 8 2022 |
Keywords
- adrenaline
- decision making
- dopa decarboxylase
- epigenetics
- foraging
- genomic imprinting
- hypothalamic-pituitary-adrenal axis
- machine learning
- monoamine
- tyrosine hydroxylase
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology