Abstract
Let p(n) be the usual partition function. Let l be an odd prime, and let r (mod t) be any arithmetic progression. If there exists an integer n≡r (mod t) such that p(n)≢0 (mod l), then, for large X, #{n≤X:n≡r (mod t), p(n)≢0 (mod l)} » √X/log X.
Original language | English (US) |
---|---|
Pages (from-to) | 185-192 |
Number of pages | 8 |
Journal | Mathematika |
Volume | 46 |
Issue number | 1 |
DOIs | |
State | Published - 1999 |
Externally published | Yes |
ASJC Scopus subject areas
- General Mathematics