Non-local recurrent network for image restoration

Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, Thomas S. Huang

Research output: Contribution to journalConference article

Abstract

Many classic methods have shown non-local self-similarity in natural images to be an effective prior for image restoration. However, it remains unclear and challenging to make use of this intrinsic property via deep networks. In this paper, we propose a non-local recurrent network (NLRN) as the first attempt to incorporate non-local operations into a recurrent neural network (RNN) for image restoration. The main contributions of this work are: (1) Unlike existing methods that measure self-similarity in an isolated manner, the proposed non-local module can be flexibly integrated into existing deep networks for end-to-end training to capture deep feature correlation between each location and its neighborhood. (2) We fully employ the RNN structure for its parameter efficiency and allow deep feature correlation to be propagated along adjacent recurrent states. This new design boosts robustness against inaccurate correlation estimation due to severely degraded images. (3) We show that it is essential to maintain a confined neighborhood for computing deep feature correlation given degraded images. This is in contrast to existing practice [41] that deploys the whole image. Extensive experiments on both image denoising and super-resolution tasks are conducted. Thanks to the recurrent non-local operations and correlation propagation, the proposed NLRN achieves superior results to state-of-the-art methods with many fewer parameters. The code is available at https://github.com/Ding-Liu/NLRN.

Original languageEnglish (US)
Pages (from-to)1673-1682
Number of pages10
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - Jan 1 2018
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: Dec 2 2018Dec 8 2018

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Non-local recurrent network for image restoration'. Together they form a unique fingerprint.

  • Cite this

    Liu, D., Wen, B., Fan, Y., Loy, C. C., & Huang, T. S. (2018). Non-local recurrent network for image restoration. Advances in Neural Information Processing Systems, 2018-December, 1673-1682.