Non-Gaussian effects, space-time decoupling, and mobility bifurcation in glassy hard-sphere fluids and suspensions

Erica J. Saltzman, Kenneth S. Schweizer

Research output: Contribution to journalArticlepeer-review

Abstract

Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities of the transient localization and barrier hopping processes have been determined. The incoherent dynamic structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form for volume fractions beyond the (naive) ideal mode coupling theory (MCT) transition. The non-Gaussian parameter (NGP) amplitude increases markedly with volume fraction and is well described by a power law in the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP peak becomes much smaller than the α relaxation time for systems characterized by significant entropic barriers. An alternate non-Gaussian parameter that probes the long time α relaxation process displays a different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decoupling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semiquantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simulation studies are presented.

Original languageEnglish (US)
Article number061501
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume74
Issue number6
DOIs
StatePublished - 2006

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Non-Gaussian effects, space-time decoupling, and mobility bifurcation in glassy hard-sphere fluids and suspensions'. Together they form a unique fingerprint.

Cite this