TY - GEN
T1 - Non-frontal camera calibration using focal stack imagery
AU - Kumar, Avinash
AU - Ahuja, Narendra
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/12/4
Y1 - 2014/12/4
N2 - A non-frontal camera has its lens and sensor plane misaligned either due to manufacturing limitations or an intentional tilting as in tilt-shift cameras. Under ideal perspective imaging, a geometric calibration of tilt is impossible as tilt parameters are correlated with the principal point location parameter. In other words, there are infinite combinations of principal point and sensor tilt parameters such that the perspective imaging equations are satisfied equally well. Previously, the non-frontal calibration problem (including sensor tilt estimation) has been solved by introducing constraints to align the principal point with the center of radial distortion. In this paper, we propose an additional constraint which incorporates image blur/defocus present in non-frontal camera images into the calibration framework. Specifically, it has earlier been shown that a non-frontal camera rotating about its center of projection captures images with varying focus. This stack of images is referred to as a focal stack. Given a focal stack of a known checkerboard (CB) pattern captured from a non-frontal camera, we combine geometric re-projection error and image bur error computed from current estimate of sensor tilt as the calibration optimization criteria. We show that the combined technique outperforms geometry-only methods while also additionally yielding blur kernel estimates at CB corners.
AB - A non-frontal camera has its lens and sensor plane misaligned either due to manufacturing limitations or an intentional tilting as in tilt-shift cameras. Under ideal perspective imaging, a geometric calibration of tilt is impossible as tilt parameters are correlated with the principal point location parameter. In other words, there are infinite combinations of principal point and sensor tilt parameters such that the perspective imaging equations are satisfied equally well. Previously, the non-frontal calibration problem (including sensor tilt estimation) has been solved by introducing constraints to align the principal point with the center of radial distortion. In this paper, we propose an additional constraint which incorporates image blur/defocus present in non-frontal camera images into the calibration framework. Specifically, it has earlier been shown that a non-frontal camera rotating about its center of projection captures images with varying focus. This stack of images is referred to as a focal stack. Given a focal stack of a known checkerboard (CB) pattern captured from a non-frontal camera, we combine geometric re-projection error and image bur error computed from current estimate of sensor tilt as the calibration optimization criteria. We show that the combined technique outperforms geometry-only methods while also additionally yielding blur kernel estimates at CB corners.
UR - http://www.scopus.com/inward/record.url?scp=84919919637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919919637&partnerID=8YFLogxK
U2 - 10.1109/ICPR.2014.44
DO - 10.1109/ICPR.2014.44
M3 - Conference contribution
AN - SCOPUS:84919919637
T3 - Proceedings - International Conference on Pattern Recognition
SP - 202
EP - 207
BT - Proceedings - International Conference on Pattern Recognition
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 22nd International Conference on Pattern Recognition, ICPR 2014
Y2 - 24 August 2014 through 28 August 2014
ER -