Abstract
Recent advances in associative memory design through structured pattern sets and graph-based inference algorithms allow reliable learning and recall of exponential numbers of patterns. Though these designs correct external errors in recall, they assume neurons compute noiselessly, in contrast to highly variable neurons in hippocampus and olfactory cortex. Here we consider associative memories with noisy internal computations and analytically characterize performance. As long as internal noise is less than a specified threshold, error probability in the recall phase can be made exceedingly small. More surprisingly, we show internal noise actually improves performance of the recall phase. Computational experiments lend additional support to our theoretical analysis. This work suggests a functional benefit to noisy neurons in biological neuronal networks.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
State | Published - 2013 |
Externally published | Yes |
Event | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States Duration: Dec 5 2013 → Dec 10 2013 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing