Abstract
Motivated by recent measurements of deposits of 60Fe on the ocean floor and the lunar surface, we model the transport of dust grains containing 60Fe from a near-Earth (i.e., within 100 pc) supernova (SN). We inject dust grains into the environment of a SN remnant (SNR) and trace their trajectories using a magnetohydrodynamic description. We assume the interstellar medium (ISM) magnetic fields are turbulent, and are amplified by the SNR shock, while the SN wind and ejecta fields are negligible. We examine the various influences on the dust grains within the SNR to determine when/if the dust decouples from the plasma, how much it is sputtered, and where within the SNR the dust grains are located. We find that Rayleigh-Taylor instabilities are important for dust survival, as they influence the location of the SN's reverse shock. We find that the presence of a magnetic field within the shocked ISM material limits the passage of SN dust grains, with the field either reflecting or trapping the grains within the heart of the SNR. These results have important implications for {\it in situ} 60Fe measurements, and for dust evolution in SNRs generally.
Original language | English (US) |
---|---|
Journal | The Astrophysical journal |
State | Submitted - Jan 22 2018 |