TY - JOUR
T1 - NMR investigations of the static and dynamic structures of bisphosphonates on human bone
T2 - A molecular model
AU - Mukherjee, Sujoy
AU - Song, Yongcheng
AU - Oldfield, Eric
PY - 2008/1/30
Y1 - 2008/1/30
N2 - We report the results of an investigation of the binding of a series of bisphosphonate drugs to human bone using 2H, 13C, 15N, and 31P nuclear magnetic resonance spectroscopy. The 31P NMR results show that the bisphosphonate groups bind irrotationally to bone, displacing orthophosphate from the bone mineral matrix. Binding of Pamidronate is well described by a Langmuir-like isotherm, from which we deduce an ∼30-38 Å2 surface area per Pamidronate molecule and a ΔG = -4.3 kcal mol-1. TEDOR of [ 13C3, 15N] Pamidronate on bone shows that the bisphosphonate binds in a gauche [N-C(1)] conformation. The results of 31P as well as 15N shift and cross-polarization measurements indicate that risedronate binds weakly, since it has a primarily neutral pyridine side chain, whereas zoledronate (with an imidazole ring) binds more strongly, since the ring is partially protonated. The results of 2H NMR measurements of side-chain 2H-labeled Pamidronate, alendronate, zoledronate, and risedronate on bone show that all side chains undergo fast but restricted motions. In Pamidronate, the motion is well simulated by a gauche+/gauche- hopping motion of the terminal -CH2-NH3+ group, due to jumps from one anionic surface group to another. The results of double-cross polarization experiments indicate that the NH3+-terminus of pamidronate is close to the bone mineral surface, and a detailed model is proposed in which the gauche side-chain hops between two bone PO43- sites.
AB - We report the results of an investigation of the binding of a series of bisphosphonate drugs to human bone using 2H, 13C, 15N, and 31P nuclear magnetic resonance spectroscopy. The 31P NMR results show that the bisphosphonate groups bind irrotationally to bone, displacing orthophosphate from the bone mineral matrix. Binding of Pamidronate is well described by a Langmuir-like isotherm, from which we deduce an ∼30-38 Å2 surface area per Pamidronate molecule and a ΔG = -4.3 kcal mol-1. TEDOR of [ 13C3, 15N] Pamidronate on bone shows that the bisphosphonate binds in a gauche [N-C(1)] conformation. The results of 31P as well as 15N shift and cross-polarization measurements indicate that risedronate binds weakly, since it has a primarily neutral pyridine side chain, whereas zoledronate (with an imidazole ring) binds more strongly, since the ring is partially protonated. The results of 2H NMR measurements of side-chain 2H-labeled Pamidronate, alendronate, zoledronate, and risedronate on bone show that all side chains undergo fast but restricted motions. In Pamidronate, the motion is well simulated by a gauche+/gauche- hopping motion of the terminal -CH2-NH3+ group, due to jumps from one anionic surface group to another. The results of double-cross polarization experiments indicate that the NH3+-terminus of pamidronate is close to the bone mineral surface, and a detailed model is proposed in which the gauche side-chain hops between two bone PO43- sites.
UR - http://www.scopus.com/inward/record.url?scp=38649112273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38649112273&partnerID=8YFLogxK
U2 - 10.1021/ja0759949
DO - 10.1021/ja0759949
M3 - Article
C2 - 18173269
AN - SCOPUS:38649112273
SN - 0002-7863
VL - 130
SP - 1264
EP - 1273
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 4
ER -