Nitro stretch probing of a single molecular layer to monitor shock compression with picosecond time resolution

Christopher M. Berg, Alexei Lagutchev, Yuanxi Fu, Dana D. Dlott

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ultrafast shock compression vibrational spectroscopy experiments with molecular monolayers provide atomic-scale time and space resolution, which enables critical testing of reactive molecular simulations. Since the origination of this project, we have greatly improved the ability to detect shocked monolayers by nonlinear coherent vibrational spectroscopy with nonresonant suppression. In this study, we show new results on a nitroaromatic monolayer, where the nitro symmetric stretch is probed. A small frequency blue-shift under shock conditions compared to measurements with static high pressure shows the shock is ∼1 GPa. The ability to flash-preheat the monolayer by several hundred K is demonstrated. In order to observe shock monolayer chemistry in real time, along with pre-heating, the shock pressure needs to be increased and methods to do so are described.

Original languageEnglish (US)
Title of host publicationShock Compression of Condensed Matter - 2011 - Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
Pages1573-1576
Number of pages4
DOIs
StatePublished - 2012
Event17th Biennial Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2011 APS SCCM - Chicago, IL, United States
Duration: Jun 26 2011Jul 1 2011

Publication series

NameAIP Conference Proceedings
Volume1426
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other17th Biennial Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2011 APS SCCM
Country/TerritoryUnited States
CityChicago, IL
Period6/26/117/1/11

Keywords

  • femtosecond spectroscopy
  • laser-driven shock
  • molecular monolayers

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Nitro stretch probing of a single molecular layer to monitor shock compression with picosecond time resolution'. Together they form a unique fingerprint.

Cite this