New searches for muonphilic particles at proton beam dump spectrometers

Diana Forbes, Christian Herwig, Yonatan Kahn, Gordan Krnjaic, Cristina Mantilla Suarez, Nhan Tran, Andrew Whitbeck

Research output: Contribution to journalArticlepeer-review

Abstract

We introduce a new search strategy for visibly decaying muonphilic particles using a proton beam spectrometer modeled after the SpinQuest experiment at Fermilab. In this setup, a ∼100 GeV primary proton beam impinges on a thick fixed target and yields a secondary muon beam. As these muons traverse the target material, they scatter off nuclei and can radiatively produce hypothetical muonphilic particles as initial- and final-state radiation. If such new states decay to dimuons, their combined invariant mass can be measured with a downstream spectrometer immersed in a Tesla-scale magnetic field. For a representative setup with 3×1014 muons on target with typical energies of ∼20 GeV, a 15% invariant mass resolution, and an effective 100 cm target length, this strategy can probe the entire parameter space for which ∼200 MeV-GeV scalar particles resolve the muon g-2 anomaly. We present sensitivity to these scalar particles at the SpinQuest experiment where no additional hardware is needed and the search could be parasitically executed within the primary nuclear physics program. Future proton beam dump experiments with optimized beam and detector configurations could have even greater sensitivity.

Original languageEnglish (US)
Article number116026
JournalPhysical Review D
Volume107
Issue number11
DOIs
StatePublished - Jun 1 2023

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'New searches for muonphilic particles at proton beam dump spectrometers'. Together they form a unique fingerprint.

Cite this