New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection

Marlee R. Labroo, Jessica E. Rutkoski

Research output: Contribution to journalArticlepeer-review


Background: Recurrent selection is a foundational breeding method for quantitative trait improvement. It typically features rapid breeding cycles that can lead to high rates of genetic gain. Usually, generations are discrete in recurrent selection, which means that breeding candidates are evaluated and considered for selection for only one cycle. Alternately, generations can overlap, with breeding candidates considered for selection as parents for multiple cycles. With recurrent genomic selection but not phenotypic selection, candidates can be re-evaluated by using genomic estimated breeding values without additional phenotyping of the candidates themselves. Therefore, it may be that candidates with true high breeding values discarded in one cycle due to underestimation of breeding value could be identified and selected in subsequent cycles. The consequences of allowing generations to overlap in recurrent selection are unknown. We assessed whether maintaining overlapping and discrete generations led to differences in genetic gain for phenotypic, genomic truncation, and genomic optimum contribution recurrent selection by stochastic simulation. Results: With phenotypic selection, overlapping generations led to decreased genetic gain compared to discrete generations due to increased selection error bias. Selected individuals, which were in the upper tail of the distribution of phenotypic values, tended to also have high absolute error relative to their true breeding value compared to the overall population. Without repeated phenotyping, these individuals erroneously believed to have high value were repeatedly selected across cycles, leading to decreased genetic gain. With genomic truncation selection, overlapping and discrete generations performed similarly as updating breeding values precluded repeatedly selecting individuals with inaccurately high estimates of breeding values in subsequent cycles. Overlapping generations did not outperform discrete generations in the presence of a positive genetic trend with genomic truncation selection, as individuals from previous breeding cycles typically had truly lower breeding values than candidates from the current generation. With genomic optimum contribution selection, overlapping and discrete generations performed similarly, but overlapping generations slightly outperformed discrete generations in the long term if the targeted inbreeding rate was extremely low. Conclusion: Maintaining discrete generations in recurrent phenotypic selection leads to increased genetic gain, especially at low heritabilities, by preventing selection error bias. With genomic truncation selection and genomic optimum contribution selection, genetic gain does not differ between discrete and overlapping generations assuming non-genetic effects are not present. Overlapping generations may increase genetic gain in the long term with very low targeted rates of inbreeding in genomic optimum contribution selection.

Original languageEnglish (US)
Article number736
JournalBMC genomics
Issue number1
StatePublished - Dec 2022

ASJC Scopus subject areas

  • Genetics
  • Biotechnology


Dive into the research topics of 'New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection'. Together they form a unique fingerprint.

Cite this