Abstract
Neurosteroids and benzodiazepines are modulators of the GABAA receptors, thereby causing anxiolysis. Furthermore, benzodiazepines such as midazolam are known to cause adverse side-effects on cognition upon administration. We previously found that midazolam at nanomolar concentrations (10 nM) blocked long-term potentiation (LTP). Here, we aim to study the effect of neurosteroids and their synthesis using XBD173, which is a synthetic compound that promotes neurosteroidogenesis by binding to the translocator protein 18 kDa (TSPO), since they might provide anxiolytic activity with a favourable side-effect profile. By means of electrophysiological measurements and the use of mice with targeted genetic mutations, we revealed that XBD173, a selective ligand of the translocator protein 18 kDa (TSPO), induced neurosteroidogenesis. In addition, the exogenous application of potentially synthesised neurosteroids (THDOC and allopregnanolone) did not depress hippocampal CA1-LTP, the cellular correlate of learning and memory. This phenomenon was observed at the same concentrations that neurosteroids conferred neuroprotection in a model of ischaemia-induced hippocampal excitotoxicity. In conclusion, our results indicate that TSPO ligands are promising candidates for post-ischaemic recovery exerting neuroprotection, in contrast to midazolam, without detrimental effects on synaptic plasticity.
Original language | English (US) |
---|---|
Article number | 9056 |
Journal | International journal of molecular sciences |
Volume | 24 |
Issue number | 10 |
DOIs | |
State | Published - May 2023 |
Keywords
- excitotoxicity
- GABAA receptors
- hippocampus
- LTP
- neuroprotection
- neurosteroids
- TSPO
- XBD173
- GABA receptors
ASJC Scopus subject areas
- Molecular Biology
- Spectroscopy
- Catalysis
- Inorganic Chemistry
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry