Neurobiologically inspired control of engineered flapping flight

Soon Jo Chung, Jeremiah R. Stoner, Michael Dorothy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This article presents a new control approach for engineered flapping flight with many interacting degrees of freedom. This paper explores the applications of neurobiologically inspired control systems in the form of Central Pattern Generators (CPG) to generate wing trajectories for potential flapping flight MAVs. We present a rigorous mathematical and control theoretic framework to design complex three dimensional motions of flapping wings. Most flapping flight demonstrators are mechanically limited in generating the wing trajectories. Because CPGs lend themselves to more biological examples of flight, a novel robotic model has been developed to emulate the flight of bats. This model has shoulder and leg joints totaling 10 degrees of freedom for control of wing properties. Results of wind tunnel experiments and numerical simulation of CPG-based flight control validate the effectiveness of the proposed neurobiologically inspired control approach.

Original languageEnglish (US)
Title of host publicationAIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781563479717
DOIs
StatePublished - 2009

Publication series

NameAIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference

ASJC Scopus subject areas

  • Aerospace Engineering
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Neurobiologically inspired control of engineered flapping flight'. Together they form a unique fingerprint.

Cite this