NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds

Jun Kun Chen, Jipeng Lyu, Yu Xiong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes NeuralEditor that enables neural radiance fields (NeRFs) natively editable for general shape editing tasks. Despite their impressive results on novel-view synthesis, it remains a fundamental challenge for NeRFs to edit the shape of the scene. Our key insight is to exploit the explicit point cloud representation as the underlying structure to construct NeRFs, inspired by the intuitive interpretation of NeRF rendering as a process that projects or 'plots' the associated 3D point cloud to a 2D image plane. To this end, NeuralEditor introduces a novel rendering scheme based on deterministic integration within K-D tree-guided density-adaptive voxels, which produces both high-quality rendering results and precise point clouds through optimization. NeuralEditor then performs shape editing via mapping associated points between point clouds. Extensive evaluation shows that NeuralEditor achieves state-of-the-art performance in both shape deformation and scene morphing tasks. Notably, NeuralEditor supports both zeroshot inference and further fine-tuning over the edited scene. Our code, benchmark, and demo video are available at immortalco.github.io/NeuralEditor.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages12439-12448
Number of pages10
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: Jun 18 2023Jun 22 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period6/18/236/22/23

Keywords

  • 3D from multi-view and sensors

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds'. Together they form a unique fingerprint.

Cite this