TY - JOUR
T1 - Neural-Network Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands
AU - Durrant, Jacob D.
AU - Carlson, Kathryn E.
AU - Martin, Teresa A.
AU - Offutt, Tavina L.
AU - Mayne, Christopher G.
AU - Katzenellenbogen, John A.
AU - Amaro, Rommie E.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/9/28
Y1 - 2015/9/28
N2 - The magnitude of the investment required to bring a drug to the market hinders medical progress, requiring hundreds of millions of dollars and years of research and development. Any innovation that improves the efficiency of the drug-discovery process has the potential to accelerate the delivery of new treatments to countless patients in need. "Virtual screening," wherein molecules are first tested in silico in order to prioritize compounds for subsequent experimental testing, is one such innovation. Although the traditional scoring functions used in virtual screens have proven useful, improved accuracy requires novel approaches. In the current work, we use the estrogen receptor to demonstrate that neural networks are adept at identifying structurally novel small molecules that bind to a selected drug target, ultimately allowing experimentalists to test fewer compounds in the earliest stages of lead identification while obtaining higher hit rates. We describe 39 novel estrogen-receptor ligands identified in silico with experimentally determined Ki values ranging from 460 nM to 20 μM, presented here for the first time.
AB - The magnitude of the investment required to bring a drug to the market hinders medical progress, requiring hundreds of millions of dollars and years of research and development. Any innovation that improves the efficiency of the drug-discovery process has the potential to accelerate the delivery of new treatments to countless patients in need. "Virtual screening," wherein molecules are first tested in silico in order to prioritize compounds for subsequent experimental testing, is one such innovation. Although the traditional scoring functions used in virtual screens have proven useful, improved accuracy requires novel approaches. In the current work, we use the estrogen receptor to demonstrate that neural networks are adept at identifying structurally novel small molecules that bind to a selected drug target, ultimately allowing experimentalists to test fewer compounds in the earliest stages of lead identification while obtaining higher hit rates. We describe 39 novel estrogen-receptor ligands identified in silico with experimentally determined Ki values ranging from 460 nM to 20 μM, presented here for the first time.
UR - http://www.scopus.com/inward/record.url?scp=84942543577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942543577&partnerID=8YFLogxK
U2 - 10.1021/acs.jcim.5b00241
DO - 10.1021/acs.jcim.5b00241
M3 - Article
C2 - 26286148
AN - SCOPUS:84942543577
SN - 1549-9596
VL - 55
SP - 1953
EP - 1961
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 9
ER -