Neural network adaptive control for nonlinear uncertain dynamical systems with asymptotic stability guarantees

Tomohisa Hayakawa, Wassim M. Haddad, Naira Hovakimyan

Research output: Contribution to journalConference article

Abstract

A neuro adaptive control framework for nonlinear uncertain dynamical systems with input-to-state stable internal dynamics is developed. The proposed framework is Lyapunov-based and unlike standard neural network controllers guaranteeing ultimate boundedness, the framework guarantees partial asymptotic stability of the closed-loop system, that is, asymptotic stability with respect to part of the closed-loop system states associated with the system plant states. The neuro adaptive controllers are constructed without requiring explicit knowledge of the system dynamics other than the assumption that the plant dynamics are continuously differentiable and that the approximation error of uncertain system nonlinearities lie in a small gain-type norm bounded conic sector. This allows us to merge robust control synthesis tools with neural network adaptive control tools to guarantee system stability. Finally, an illustrative numerical example is provided to demonstrate the efficacy of the proposed approach.

Original languageEnglish (US)
Article numberWeC05.2
Pages (from-to)1301-1306
Number of pages6
JournalProceedings of the American Control Conference
Volume2
StatePublished - Sep 1 2005
Externally publishedYes
Event2005 American Control Conference, ACC - Portland, OR, United States
Duration: Jun 8 2005Jun 10 2005

Fingerprint

Asymptotic stability
Closed loop systems
Dynamical systems
Neural networks
Controllers
Control nonlinearities
Uncertain systems
Robust control
System stability

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

Neural network adaptive control for nonlinear uncertain dynamical systems with asymptotic stability guarantees. / Hayakawa, Tomohisa; Haddad, Wassim M.; Hovakimyan, Naira.

In: Proceedings of the American Control Conference, Vol. 2, WeC05.2, 01.09.2005, p. 1301-1306.

Research output: Contribution to journalConference article

@article{99a5900164aa45518c123f82232d51fa,
title = "Neural network adaptive control for nonlinear uncertain dynamical systems with asymptotic stability guarantees",
abstract = "A neuro adaptive control framework for nonlinear uncertain dynamical systems with input-to-state stable internal dynamics is developed. The proposed framework is Lyapunov-based and unlike standard neural network controllers guaranteeing ultimate boundedness, the framework guarantees partial asymptotic stability of the closed-loop system, that is, asymptotic stability with respect to part of the closed-loop system states associated with the system plant states. The neuro adaptive controllers are constructed without requiring explicit knowledge of the system dynamics other than the assumption that the plant dynamics are continuously differentiable and that the approximation error of uncertain system nonlinearities lie in a small gain-type norm bounded conic sector. This allows us to merge robust control synthesis tools with neural network adaptive control tools to guarantee system stability. Finally, an illustrative numerical example is provided to demonstrate the efficacy of the proposed approach.",
author = "Tomohisa Hayakawa and Haddad, {Wassim M.} and Naira Hovakimyan",
year = "2005",
month = "9",
day = "1",
language = "English (US)",
volume = "2",
pages = "1301--1306",
journal = "Proceedings of the American Control Conference",
issn = "0743-1619",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Neural network adaptive control for nonlinear uncertain dynamical systems with asymptotic stability guarantees

AU - Hayakawa, Tomohisa

AU - Haddad, Wassim M.

AU - Hovakimyan, Naira

PY - 2005/9/1

Y1 - 2005/9/1

N2 - A neuro adaptive control framework for nonlinear uncertain dynamical systems with input-to-state stable internal dynamics is developed. The proposed framework is Lyapunov-based and unlike standard neural network controllers guaranteeing ultimate boundedness, the framework guarantees partial asymptotic stability of the closed-loop system, that is, asymptotic stability with respect to part of the closed-loop system states associated with the system plant states. The neuro adaptive controllers are constructed without requiring explicit knowledge of the system dynamics other than the assumption that the plant dynamics are continuously differentiable and that the approximation error of uncertain system nonlinearities lie in a small gain-type norm bounded conic sector. This allows us to merge robust control synthesis tools with neural network adaptive control tools to guarantee system stability. Finally, an illustrative numerical example is provided to demonstrate the efficacy of the proposed approach.

AB - A neuro adaptive control framework for nonlinear uncertain dynamical systems with input-to-state stable internal dynamics is developed. The proposed framework is Lyapunov-based and unlike standard neural network controllers guaranteeing ultimate boundedness, the framework guarantees partial asymptotic stability of the closed-loop system, that is, asymptotic stability with respect to part of the closed-loop system states associated with the system plant states. The neuro adaptive controllers are constructed without requiring explicit knowledge of the system dynamics other than the assumption that the plant dynamics are continuously differentiable and that the approximation error of uncertain system nonlinearities lie in a small gain-type norm bounded conic sector. This allows us to merge robust control synthesis tools with neural network adaptive control tools to guarantee system stability. Finally, an illustrative numerical example is provided to demonstrate the efficacy of the proposed approach.

UR - http://www.scopus.com/inward/record.url?scp=23944507104&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23944507104&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:23944507104

VL - 2

SP - 1301

EP - 1306

JO - Proceedings of the American Control Conference

JF - Proceedings of the American Control Conference

SN - 0743-1619

M1 - WeC05.2

ER -