TY - JOUR
T1 - Neural growth hormone implicated in body weight sex differences
AU - Bonthuis, Paul J.
AU - Rissman, Emilie F.
PY - 2013/10/1
Y1 - 2013/10/1
N2 - As for many human diseases, the incidence of obesity and its associated health risks are sexually dimorphic: worldwide the rate of obesity is higher in women. Sex differences in metabolism, appetite, body composition, and fat deposition are contributing biological factors. Gonadal hormones regulate the development of many sexually dimorphic traits in humans and animals, and, in addition, studies in mice indicate a role for direct genetic effects of sex chromosome dosage on body weight, deposition of fat, and circadian timing of feeding behavior. Specifically, mice of either sex with 2 X chromosomes, typical of normal females, have heavier body weights, gain more weight, and eat more food during the light portion of the day than mice of either sex with a single X chromosome. Here we test the effects of X chromosome dosage on body weight and report that gonadal females with 2 X chromosomes express higher levels of GH gene (Gh) mRNA in the preoptic area (POA) of the hypothalamus than females with 1 X chromosome and males. Furthermore, Gh expression in the POA of the hypothalamus of mice with 2 X chromosomes correlated with body weight; GH is known to have orexigenic properties. Acute infusion of GH into the POA increased immediate food intake in normal (XY) males. We propose that X inactivation-escaping genes modulate Gh expression and food intake, and this is part of the mechanism by which individuals with 2 X chromosomes are heavier than individuals with a single X chromosome.
AB - As for many human diseases, the incidence of obesity and its associated health risks are sexually dimorphic: worldwide the rate of obesity is higher in women. Sex differences in metabolism, appetite, body composition, and fat deposition are contributing biological factors. Gonadal hormones regulate the development of many sexually dimorphic traits in humans and animals, and, in addition, studies in mice indicate a role for direct genetic effects of sex chromosome dosage on body weight, deposition of fat, and circadian timing of feeding behavior. Specifically, mice of either sex with 2 X chromosomes, typical of normal females, have heavier body weights, gain more weight, and eat more food during the light portion of the day than mice of either sex with a single X chromosome. Here we test the effects of X chromosome dosage on body weight and report that gonadal females with 2 X chromosomes express higher levels of GH gene (Gh) mRNA in the preoptic area (POA) of the hypothalamus than females with 1 X chromosome and males. Furthermore, Gh expression in the POA of the hypothalamus of mice with 2 X chromosomes correlated with body weight; GH is known to have orexigenic properties. Acute infusion of GH into the POA increased immediate food intake in normal (XY) males. We propose that X inactivation-escaping genes modulate Gh expression and food intake, and this is part of the mechanism by which individuals with 2 X chromosomes are heavier than individuals with a single X chromosome.
UR - http://www.scopus.com/inward/record.url?scp=84884689815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884689815&partnerID=8YFLogxK
U2 - 10.1210/en.2013-1234
DO - 10.1210/en.2013-1234
M3 - Article
C2 - 23861378
AN - SCOPUS:84884689815
SN - 0013-7227
VL - 154
SP - 3826
EP - 3835
JO - Endocrinology
JF - Endocrinology
IS - 10
ER -