TY - GEN
T1 - Neural embedding propagation on heterogeneous networks
AU - Yang, Carl
AU - Zhang, Jieyu
AU - Han, Jiawei
N1 - Funding Information:
Research was sponsored in part by U.S. Army Research Lab. under Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), DARPA under Agreement No. W911NF-17-C-0099, National Science Foundation IIS 16-18481, IIS 17-04532, and IIS-17-41317, DTRA HDTRA11810026, and grant 1U54GM114838 awarded by NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov).
Publisher Copyright:
© 2019 IEEE.
PY - 2019/11
Y1 - 2019/11
N2 - Classification is one of the most important problems in machine learning. To address label scarcity, semi-supervised learning (SSL) has been intensively studied over the past two decades, which mainly leverages data affinity modeled by networks. Label propagation (LP), however, as the most popular SSL technique, mostly only works on homogeneous networks with single-typed simple interactions. In this work, we focus on the more general and powerful heterogeneous networks, which accommodate multi-typed objects and links, and thus endure multi-typed complex interactions. Specifically, we propose neural embedding propagation (NEP), which leverages distributed embeddings to represent objects and dynamically composed modular networks to model their complex interactions. While generalizing LP as a simple instance, NEP is far more powerful in its natural awareness of different types of objects and links, and the ability to automatically capture their important interaction patterns. Further, we develop a series of efficient training strategies for NEP, leading to its easy deployment on real-world heterogeneous networks with millions of objects. With extensive experiments on three datasets, we comprehensively demonstrate the effectiveness, efficiency, and robustness of NEP compared with state-of-the-art network embedding and SSL algorithms.
AB - Classification is one of the most important problems in machine learning. To address label scarcity, semi-supervised learning (SSL) has been intensively studied over the past two decades, which mainly leverages data affinity modeled by networks. Label propagation (LP), however, as the most popular SSL technique, mostly only works on homogeneous networks with single-typed simple interactions. In this work, we focus on the more general and powerful heterogeneous networks, which accommodate multi-typed objects and links, and thus endure multi-typed complex interactions. Specifically, we propose neural embedding propagation (NEP), which leverages distributed embeddings to represent objects and dynamically composed modular networks to model their complex interactions. While generalizing LP as a simple instance, NEP is far more powerful in its natural awareness of different types of objects and links, and the ability to automatically capture their important interaction patterns. Further, we develop a series of efficient training strategies for NEP, leading to its easy deployment on real-world heterogeneous networks with millions of objects. With extensive experiments on three datasets, we comprehensively demonstrate the effectiveness, efficiency, and robustness of NEP compared with state-of-the-art network embedding and SSL algorithms.
KW - Embedding propagation
KW - Heterogeneous networks
KW - Label propagation
KW - Modular networks
KW - Network embedding
KW - Semi supervised learning
UR - http://www.scopus.com/inward/record.url?scp=85078887499&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078887499&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2019.00080
DO - 10.1109/ICDM.2019.00080
M3 - Conference contribution
AN - SCOPUS:85078887499
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 698
EP - 707
BT - Proceedings - 19th IEEE International Conference on Data Mining, ICDM 2019
A2 - Wang, Jianyong
A2 - Shim, Kyuseok
A2 - Wu, Xindong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 19th IEEE International Conference on Data Mining, ICDM 2019
Y2 - 8 November 2019 through 11 November 2019
ER -