Neural-Answering Logical Queries on Knowledge Graphs

Lihui Liu, Boxin Du, Heng Ji, Cheng Xiang Zhai, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Logical queries constitute an important subset of questions posed in knowledge graph question answering systems. Yet, effectively answering logical queries on large knowledge graphs remains a highly challenging problem. Traditional subgraph matching based methods might suffer from the noise and incompleteness of the underlying knowledge graph, often with a prolonged online response time. Recently, an alternative type of method has emerged whose key idea is to embed knowledge graph entities and the query in an embedding space so that the embedding of answer entities is close to that of the query. Compared with subgraph matching based methods, it can better handle the noisy or missing information in knowledge graph, with a faster online response. Promising as it might be, several fundamental limitations still exist, including the linear transformation assumption for modeling relations and the inability to answer complex queries with multiple variable nodes. In this paper, we propose an embedding based method (NewLook) to address these limitations. Our proposed method offers three major advantages. First (Applicability), it supports four types of logical operations and can answer queries with multiple variable nodes. Second (Effectiveness), the proposed NewLook goes beyond the linear transformation assumption, and thus consistently outperforms the existing methods. Third (Efficiency), compared with subgraph matching based methods, NewLook is at least 3 times faster in answering the queries; compared with the existing embed-ding based methods, NewLook bears a comparable or even faster online response and offline training time.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1087-1097
Number of pages11
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

Keywords

  • knowledge graph embedding
  • knowledge graph question answering
  • logical query embedding

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Neural-Answering Logical Queries on Knowledge Graphs'. Together they form a unique fingerprint.

Cite this