Network analysis of design automation literature

Tinghao Guo, Jiarui Xu, Yue Sun, Yilin Dong, Neal Davis, James T. Allison

Research output: Contribution to journalArticle

Abstract

In this paper, we present the results of a study of citation and co-Authorship networks for articles published at the ASME Design Automation Conference (DAC) during the years 2002-2015. Two topic-modeling methods are presented for studying the DAC literature: A frequency-based model was developed to explore DAC topic distribution and evolution, as well as citation analysis for each core topic. Correlation analysis and association-rule mining were used to discover relationships between topics. A new unsupervised learning algorithm, propagation mergence (PM), was created to address identified shortcomings of existing methods and applied to study the existing DAC citation network. Influential articles and important article clusters were identified and effective visualizations created. We also investigated the DAC co-Authorship network by identifying key authors and showing that the network structure exhibits small-world-network properties. The resulting insights, obtained by the both the proposed and existing methods, may be beneficial to the engineering design research community, especially with respect to determining future research directions and possible actions for improvement. The data set used here is limited; expanding to include additional relevant conference proceedings and journal articles in the future would offer a more complete understanding of the engineering design research literature.

Original languageEnglish (US)
Article number101403
JournalJournal of Mechanical Design, Transactions of the ASME
Volume140
Issue number10
DOIs
StatePublished - Oct 2018

    Fingerprint

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Cite this