Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage

G. F. McIsaac, Xuetao Hu

Research output: Contribution to journalArticlepeer-review


Some of the largest riverine N fluxes in the continental USA have been observed in agricultural regions with extensive artificial subsurface drainage, commonly called tile drainage. The degree to which high riverine N fluxes in these settings are due to high net N inputs (NNI), greater transport efficiency caused by the drainage systems, or other factors is not known. The objective of this study was to evaluate the role of tile drainage by comparing NNI and riverine N fluxes in regions of Illinois with similar climate and crop production practices but with different intensities of tile drainage. Annual values of NNI between 1940 and 1999 were estimated from county level agricultural production statistics and census estimates of human population. During 1945-1961, riverine nitrate flux in the extensively tile drained region averaged 6.6kgNha -1year -1 compared to 1.3 to 3.1kgNha -1 for the non-tile drained region, even though NNI was greater in the non-tile drained region. During 1977-1997, NNI to the tile-drained region had increased to 27kgNha -1year -1 and riverine N flux was approximately 100% of this value. In the non-tile-drained region, NNI was approximately 23kgNha -1year -1 and riverine N flux was between 25% and 37% of this value (5 to 9kgNha -1year -1). Denitrification is not included in NNI and, therefore, any denitrification losses from tile-drained watersheds must be balanced by other N sources, such as depletion of soil organic N or underestimation of biological N fixation. If denitrification and depletion of soil organic N are significant in these basins, marginal reductions in NNI may have little influence on riverine N flux. If tile drained cropland in Illinois is representative of the estimated 11 million ha of tile drained cropland throughout the Mississippi River Basin, this 16% of the drainage area contributed approximately 30% of the increased nitrate N flux in the Lower Mississippi River that occurred between 1955 and the 1990s.

Original languageEnglish (US)
Pages (from-to)251-271
Number of pages21
Issue number2
StatePublished - Sep 2004
Externally publishedYes


  • Agriculture
  • Drainage
  • Nitrogen
  • Rivers

ASJC Scopus subject areas

  • Environmental Chemistry
  • Water Science and Technology
  • Earth-Surface Processes


Dive into the research topics of 'Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage'. Together they form a unique fingerprint.

Cite this