TY - JOUR
T1 - Neither linoleic acid nor arachidonic acid promote white adipose tissue inflammation in Fads2-/- mice fed low fat diets
AU - Suitor, Katherine
AU - Payne, George W.
AU - Sarr, Ousseynou
AU - Abdelmagid, Salma
AU - Nakamura, Manabu T.
AU - Ma, David WL
AU - Mutch, David M.
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/11
Y1 - 2017/11
N2 - Dietary n-6 polyunsaturated fatty acids (PUFA) are widely perceived to promote inflammation and contribute to the development of chronic diseases. This dogma has been recently questioned due to evidence that n-6 PUFA, specifically linoleic acid (LA, 18:2n-6) and arachidonic acid (AA, 20:4n-6), do not appear to activate inflammatory signalling pathways when consumed in moderate amounts. However, delineating the independent roles of different dietary n-6 PUFA in vivo is challenging because LA is continuously converted into AA in a pathway regulated by the fatty acid desaturase 2 (Fads2) gene. The objective of this study was to investigate the independent roles of LA and AA on white adipose tissue (WAT) inflammatory signalling pathways using Fads2-/- mice. We hypothesized that dietary LA would not induce WAT inflammation, unless it was endogenously converted into AA. Male C57BL/6 wild-type (WT) and Fads2-/- mice were fed low-fat isocaloric diets containing either 7% corn oil w/w (CD, containing ~42% LA) or 7% ARASCO oil w/w (AD, containing ~27% AA) for 9 weeks. WAT inflammatory gene expression, protein levels, as well as phospholipid (PL) and triacylglycerol (TAG) fatty acid composition, were analyzed by RT-qPCR, western blots, and gas chromatography, respectively. Fads2-/- mice fed CD had high LA, but little-to-no GLA (18:3n-6), DGLA (20:3n-6), and AA in PLs and TAGs compared to their WT counterparts. In comparison, Fads2-/- and WT mice fed AD showed minimal differences in n-6 PUFA content in serum and WAT, despite having significantly more AA than CD-fed mice. No differences in gene expression for common inflammatory adipokines (e.g. Mcp-1, Ccl5, Tnfα) or key regulators of eicosanoid production (e.g. Cox-2, Alox-12, Alox-15) were detected in WAT between any of the diet and genotype groups. Furthermore, no differences in MCP-1, and total or phosphorylated STAT3 and p38 inflammatory proteins, were observed. Collectively, these results demonstrate that neither LA nor AA promote WAT inflammation when consumed as part of a low-fat diet. Therefore, the existing dogma surrounding n-6 PUFA and inflammation needs to be reconsidered.
AB - Dietary n-6 polyunsaturated fatty acids (PUFA) are widely perceived to promote inflammation and contribute to the development of chronic diseases. This dogma has been recently questioned due to evidence that n-6 PUFA, specifically linoleic acid (LA, 18:2n-6) and arachidonic acid (AA, 20:4n-6), do not appear to activate inflammatory signalling pathways when consumed in moderate amounts. However, delineating the independent roles of different dietary n-6 PUFA in vivo is challenging because LA is continuously converted into AA in a pathway regulated by the fatty acid desaturase 2 (Fads2) gene. The objective of this study was to investigate the independent roles of LA and AA on white adipose tissue (WAT) inflammatory signalling pathways using Fads2-/- mice. We hypothesized that dietary LA would not induce WAT inflammation, unless it was endogenously converted into AA. Male C57BL/6 wild-type (WT) and Fads2-/- mice were fed low-fat isocaloric diets containing either 7% corn oil w/w (CD, containing ~42% LA) or 7% ARASCO oil w/w (AD, containing ~27% AA) for 9 weeks. WAT inflammatory gene expression, protein levels, as well as phospholipid (PL) and triacylglycerol (TAG) fatty acid composition, were analyzed by RT-qPCR, western blots, and gas chromatography, respectively. Fads2-/- mice fed CD had high LA, but little-to-no GLA (18:3n-6), DGLA (20:3n-6), and AA in PLs and TAGs compared to their WT counterparts. In comparison, Fads2-/- and WT mice fed AD showed minimal differences in n-6 PUFA content in serum and WAT, despite having significantly more AA than CD-fed mice. No differences in gene expression for common inflammatory adipokines (e.g. Mcp-1, Ccl5, Tnfα) or key regulators of eicosanoid production (e.g. Cox-2, Alox-12, Alox-15) were detected in WAT between any of the diet and genotype groups. Furthermore, no differences in MCP-1, and total or phosphorylated STAT3 and p38 inflammatory proteins, were observed. Collectively, these results demonstrate that neither LA nor AA promote WAT inflammation when consumed as part of a low-fat diet. Therefore, the existing dogma surrounding n-6 PUFA and inflammation needs to be reconsidered.
KW - Arachidonic acid
KW - Delta-6 desaturase
KW - Epididymal fat
KW - Inflammation
KW - Inguinal fat
KW - Linoleic acid
UR - http://www.scopus.com/inward/record.url?scp=85030151766&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030151766&partnerID=8YFLogxK
U2 - 10.1016/j.plefa.2017.09.008
DO - 10.1016/j.plefa.2017.09.008
M3 - Article
C2 - 29031400
AN - SCOPUS:85030151766
SN - 0952-3278
VL - 126
SP - 84
EP - 91
JO - Prostaglandins Leukotrienes and Essential Fatty Acids
JF - Prostaglandins Leukotrienes and Essential Fatty Acids
ER -