Nanotwinned metal MEMS films with unprecedented strength and stability

Gi Dong Sim, Jessica A. Krogstad, K. Madhav Reddy, Kelvin Y. Xie, Gianna M. Valentino, Timothy P. Weihs, Kevin J. Hemker

Research output: Contribution to journalArticlepeer-review

Abstract

Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications.

Original languageEnglish (US)
Article numbere1700685
JournalScience Advances
Volume3
Issue number6
DOIs
StatePublished - Jun 2017

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Nanotwinned metal MEMS films with unprecedented strength and stability'. Together they form a unique fingerprint.

Cite this