@article{5067e27c99534a1880d735116d7cf33e,
title = "Nanotechnology, nanotoxicology, and neuroscience",
abstract = "Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back ∼30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.",
keywords = "Engineered nanomaterials, Multifunctional nanoparticle, Nano-bio interface, Nanobiotechnology, Nanomaterials, Nanoparticles, Nanoscience, Nanostructured, Nanotechnology, Nanotoxicology, Neurobiology, Neuroscience, Toxicology",
author = "Suh, {Won Hyuk} and Suslick, {Kenneth S.} and Stucky, {Galen D.} and Suh, {Yoo Hun}",
note = "Funding Information: We would like to thank Ms. Ah Ram Jang for her assistance in putting together the tables in Sections 4.2 and 3.2 and discussions related to the topic and Mr. Se Yun Kim for helpful discussions on several topics mentioned in this review paper. Electron microscope (EM) images ( Figs. 1 and 11 ) were taken using FEI XL30 FE-SEM and FEI T20 TEM located in the California NanoSystems Institute (CNSI; now Elings Hall), UCSB. AFM images were taken at the Seoul National University (SNU) shared facilities. Single crystal X-ray diffraction on DHED was done at UIUC ( Figs. 1 and 2 ). All illustrations were designed and created by Dr. Won Hyuk Suh with assistance from Ms. Hae Yeon Yi of the Graphic Design Program at UIUC. Financial support is from National Creative Research Initiative (CRI) Grant from Ministry of Education, Science and technology (MEST) and in part by BK 21 Human Life Sciences (Korea), NSF (CHE0315494, National Science Foundation, USA), NIH (HL 25934, National Institute of Health, USA), ONR (N00014-06-1-0145, Office of Naval Research, USA), NSF (DMR 02-33728, National Science Foundation, USA). Dr. Won Hyuk Suh would like to thank the Otis Williams Postdoctoral Fellowship in Bioengineering, UCSB (via Santa Barbara Fund) and the Drickamer Predoctoral Research Fellowship, UIUC for past, present, and future supports. Special thanks to Profs. Patricia Holden, Kenneth Kosik, Dennis Clegg, Herbert Waite, Matthew Tirrell, Norbert Reich, Dan Morse and Drs. Sherry Hikita, Brian Matsumoto, Min-Jeong Kye, Dong Soo Hwang, Na Xu, Kenneth Linberg, Shin-Sik Choi, Andrea Neals, and Ms. Allison Horst and Mr. John Priester for increasing the authors{\textquoteright} understandings of the multiple nano–bio interfacial problems and research efforts they are involved in the UCSB campus. WHS also thanks the NIH sponsored CHOC/Burnham (now Scripps) human embryonic stem cell training course and the organizers, Dr. Philip Schwartz, Prof. Jean Loring, and the staff members.",
year = "2009",
month = feb,
doi = "10.1016/j.pneurobio.2008.09.009",
language = "English (US)",
volume = "87",
pages = "133--170",
journal = "Progress in Neurobiology",
issn = "0301-0082",
publisher = "Elsevier Limited",
number = "3",
}