TY - JOUR
T1 - Nanoscale Drug Delivery Systems
T2 - From Medicine to Agriculture
AU - Vega-Vásquez, Pablo
AU - Mosier, Nathan S.
AU - Irudayaraj, Joseph
N1 - Partial funding from the Colombian Ministry of Science, Technology, and Innovation (Colciencias 728/2015) in the form of fellowship to PV-V was appreciated. Support provided under the USDA-ARS project number 1935-42000-049-00D with the Center for Food Safety Engineering at Purdue University is appreciated.
Funding. Partial funding from the Colombian Ministry of Science, Technology, and Innovation (Colciencias 728/2015) in the form of fellowship to PV-V was appreciated. Support provided under the USDA-ARS project number 1935-42000-049-00D with the Center for Food Safety Engineering at Purdue University is appreciated.
PY - 2020/2/18
Y1 - 2020/2/18
N2 - The main challenges in drug delivery systems are to protect, transport and release biologically active compounds at the right time in a safe and reproducible manner, usually at a specific target site. In the past, drug nano-carriers have contributed to the development of precision medicine and to a lesser extent have focused on its inroads in agriculture. The concept of engineered nano-carriers may be a promising route to address confounding challenges in agriculture that could perhaps lead to an increase in crop production while reducing the environmental impact associated with crop protection and food production. The main objective of this review is to contrast the advantages and disadvantages of different types of nanoparticles and nano-carriers currently used in the biomedical field along with their fabrication methods to discuss the potential use of these technologies at a larger scale in agriculture. Here we explain what is the problem that nano-delivery systems intent to solve as a technological platform and describe the benefits this technology has brought to medicine. Also here we highlight the potential drawbacks that this technology may face during its translation to agricultural applications, based on the lessons learned so far from its use for biomedical purposes. We discuss not only the characteristics of an ideal nano-delivery system, but also the potential constraints regarding the fabrication including technical, environmental, and legal aspects. A key motivation is to evaluate the potential use of these systems in agriculture, especially in the area of plant breeding, growth promotion, disease control, and post-harvest quality control. Further, we highlight the importance of a rational design of nano-carriers and identify current research gaps to enable scale-up relevant to applications in the treatment of plant diseases, controlled release of fertilizers, and plant breeding.
AB - The main challenges in drug delivery systems are to protect, transport and release biologically active compounds at the right time in a safe and reproducible manner, usually at a specific target site. In the past, drug nano-carriers have contributed to the development of precision medicine and to a lesser extent have focused on its inroads in agriculture. The concept of engineered nano-carriers may be a promising route to address confounding challenges in agriculture that could perhaps lead to an increase in crop production while reducing the environmental impact associated with crop protection and food production. The main objective of this review is to contrast the advantages and disadvantages of different types of nanoparticles and nano-carriers currently used in the biomedical field along with their fabrication methods to discuss the potential use of these technologies at a larger scale in agriculture. Here we explain what is the problem that nano-delivery systems intent to solve as a technological platform and describe the benefits this technology has brought to medicine. Also here we highlight the potential drawbacks that this technology may face during its translation to agricultural applications, based on the lessons learned so far from its use for biomedical purposes. We discuss not only the characteristics of an ideal nano-delivery system, but also the potential constraints regarding the fabrication including technical, environmental, and legal aspects. A key motivation is to evaluate the potential use of these systems in agriculture, especially in the area of plant breeding, growth promotion, disease control, and post-harvest quality control. Further, we highlight the importance of a rational design of nano-carriers and identify current research gaps to enable scale-up relevant to applications in the treatment of plant diseases, controlled release of fertilizers, and plant breeding.
KW - agriculture
KW - drug delivery systems
KW - encapsulation
KW - nanotechnology
KW - phytonanotechnology
UR - http://www.scopus.com/inward/record.url?scp=85081137444&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081137444&partnerID=8YFLogxK
U2 - 10.3389/fbioe.2020.00079
DO - 10.3389/fbioe.2020.00079
M3 - Review article
C2 - 32133353
AN - SCOPUS:85081137444
SN - 2296-4185
VL - 8
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
M1 - 79
ER -