Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

Ilija Zeljkovic, Kane L. Scipioni, Daniel Walkup, Yoshinori Okada, Wenwen Zhou, R. Sankar, Guoqing Chang, Yung Jui Wang, Hsin Lin, Arun Bansil, Fangcheng Chou, Ziqiang Wang, Vidya Madhavan

Research output: Contribution to journalArticlepeer-review

Abstract

Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

Original languageEnglish (US)
Article number6559
JournalNature communications
Volume6
DOIs
StatePublished - Mar 2015

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide'. Together they form a unique fingerprint.

Cite this