TY - JOUR
T1 - Nanoscale detection of metastable states in porous and granular media
AU - Ilin, Eduard
AU - Li, Yaofa
AU - Colla, Eugene V.
AU - Christensen, Kenneth T.
AU - Sahimi, Muhammad
AU - Marchevsky, Maxim
AU - Frailey, Scott M.
AU - Bezryadin, Alexey
N1 - Funding Information:
This work was supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0C12504.
Publisher Copyright:
© 2020 Author(s).
PY - 2020/1/14
Y1 - 2020/1/14
N2 - Microseismicity in subsurface geologic environments, such as sandstone gas reservoirs, is expected in the presence of liquid or gas injection. Although difficult to predict, the potential for microseismic events is important to field-scale projects, such as geologic storage of CO2, whereby the gas is injected into natural sandstone formations. We conjecture that a primary factor causing microseismicity is the existence of metastable states in a granular porous medium and provide experimental evidence for its validity. External perturbation triggers abrupt relaxation events which, with a certain probability, can grow into macroscopic microseismic events. Here, the triggering perturbation is produced by cooling to a cryogenic temperature. As the "sensor" for the abrupt relaxation events, we use thin Al films deposited on the sandstone surface. We show that as the temperature is varied, the films' resistance exhibits sharp jumps, which we attribute to mechanical restructuring or microfractures in the fabric of the sandstone. We checked the superconducting characteristics of the Al thin films on the sandstone and found microwave-induced Shapiro steps on the voltage-current diagrams. Such quantized steps provide indications that the film is made of a network of nanobridges, which makes it even more sensitive to abrupt relaxation events occurring in the substrate, i.e., in the underlying sandstone.
AB - Microseismicity in subsurface geologic environments, such as sandstone gas reservoirs, is expected in the presence of liquid or gas injection. Although difficult to predict, the potential for microseismic events is important to field-scale projects, such as geologic storage of CO2, whereby the gas is injected into natural sandstone formations. We conjecture that a primary factor causing microseismicity is the existence of metastable states in a granular porous medium and provide experimental evidence for its validity. External perturbation triggers abrupt relaxation events which, with a certain probability, can grow into macroscopic microseismic events. Here, the triggering perturbation is produced by cooling to a cryogenic temperature. As the "sensor" for the abrupt relaxation events, we use thin Al films deposited on the sandstone surface. We show that as the temperature is varied, the films' resistance exhibits sharp jumps, which we attribute to mechanical restructuring or microfractures in the fabric of the sandstone. We checked the superconducting characteristics of the Al thin films on the sandstone and found microwave-induced Shapiro steps on the voltage-current diagrams. Such quantized steps provide indications that the film is made of a network of nanobridges, which makes it even more sensitive to abrupt relaxation events occurring in the substrate, i.e., in the underlying sandstone.
UR - http://www.scopus.com/inward/record.url?scp=85077968208&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077968208&partnerID=8YFLogxK
U2 - 10.1063/1.5135321
DO - 10.1063/1.5135321
M3 - Article
AN - SCOPUS:85077968208
SN - 0021-8979
VL - 127
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 2
M1 - 024901
ER -